| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rzal | GIF version | ||
| Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| rzal | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 3468 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 2 | 1 | necon2bi 2432 | . . 3 ⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) |
| 3 | 2 | pm2.21d 620 | . 2 ⊢ (𝐴 = ∅ → (𝑥 ∈ 𝐴 → 𝜑)) |
| 4 | 3 | ralrimiv 2579 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∅c0 3461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3169 df-nul 3462 |
| This theorem is referenced by: ralf0 3564 fiubm 10980 mgm0 13245 sgrp0 13286 |
| Copyright terms: Public domain | W3C validator |