ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rzal GIF version

Theorem rzal 3569
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rzal (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rzal
StepHypRef Expression
1 ne0i 3478 . . . 4 (𝑥𝐴𝐴 ≠ ∅)
21necon2bi 2435 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴)
32pm2.21d 622 . 2 (𝐴 = ∅ → (𝑥𝐴𝜑))
43ralrimiv 2582 1 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  wral 2488  c0 3471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-v 2781  df-dif 3179  df-nul 3472
This theorem is referenced by:  ralf0  3574  fiubm  11017  mgm0  13368  sgrp0  13409
  Copyright terms: Public domain W3C validator