| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbhypf | Unicode version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| sbhypf.1 |
|
| sbhypf.2 |
|
| Ref | Expression |
|---|---|
| sbhypf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . 3
| |
| 2 | eqeq1 2203 |
. . 3
| |
| 3 | 1, 2 | ceqsexv 2802 |
. 2
|
| 4 | nfs1v 1958 |
. . . 4
| |
| 5 | sbhypf.1 |
. . . 4
| |
| 6 | 4, 5 | nfbi 1603 |
. . 3
|
| 7 | sbequ12 1785 |
. . . . 5
| |
| 8 | 7 | bicomd 141 |
. . . 4
|
| 9 | sbhypf.2 |
. . . 4
| |
| 10 | 8, 9 | sylan9bb 462 |
. . 3
|
| 11 | 6, 10 | exlimi 1608 |
. 2
|
| 12 | 3, 11 | sylbir 135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: mob2 2944 cbvmptf 4127 tfisi 4623 ralxpf 4812 rexxpf 4813 nn0ind-raph 9443 |
| Copyright terms: Public domain | W3C validator |