| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbhypf | Unicode version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| sbhypf.1 |
|
| sbhypf.2 |
|
| Ref | Expression |
|---|---|
| sbhypf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . 3
| |
| 2 | eqeq1 2212 |
. . 3
| |
| 3 | 1, 2 | ceqsexv 2811 |
. 2
|
| 4 | nfs1v 1967 |
. . . 4
| |
| 5 | sbhypf.1 |
. . . 4
| |
| 6 | 4, 5 | nfbi 1612 |
. . 3
|
| 7 | sbequ12 1794 |
. . . . 5
| |
| 8 | 7 | bicomd 141 |
. . . 4
|
| 9 | sbhypf.2 |
. . . 4
| |
| 10 | 8, 9 | sylan9bb 462 |
. . 3
|
| 11 | 6, 10 | exlimi 1617 |
. 2
|
| 12 | 3, 11 | sylbir 135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: mob2 2953 cbvmptf 4139 tfisi 4636 ralxpf 4825 rexxpf 4826 nn0ind-raph 9492 |
| Copyright terms: Public domain | W3C validator |