| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbhypf | Unicode version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| sbhypf.1 |
|
| sbhypf.2 |
|
| Ref | Expression |
|---|---|
| sbhypf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . 3
| |
| 2 | eqeq1 2214 |
. . 3
| |
| 3 | 1, 2 | ceqsexv 2816 |
. 2
|
| 4 | nfs1v 1968 |
. . . 4
| |
| 5 | sbhypf.1 |
. . . 4
| |
| 6 | 4, 5 | nfbi 1613 |
. . 3
|
| 7 | sbequ12 1795 |
. . . . 5
| |
| 8 | 7 | bicomd 141 |
. . . 4
|
| 9 | sbhypf.2 |
. . . 4
| |
| 10 | 8, 9 | sylan9bb 462 |
. . 3
|
| 11 | 6, 10 | exlimi 1618 |
. 2
|
| 12 | 3, 11 | sylbir 135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: mob2 2960 cbvmptf 4154 tfisi 4653 ralxpf 4842 rexxpf 4843 nn0ind-raph 9525 |
| Copyright terms: Public domain | W3C validator |