ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfisi Unicode version

Theorem tfisi 4583
Description: A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
tfisi.a  |-  ( ph  ->  A  e.  V )
tfisi.b  |-  ( ph  ->  T  e.  On )
tfisi.c  |-  ( (
ph  /\  ( R  e.  On  /\  R  C_  T )  /\  A. y ( S  e.  R  ->  ch )
)  ->  ps )
tfisi.d  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
tfisi.e  |-  ( x  =  A  ->  ( ps 
<->  th ) )
tfisi.f  |-  ( x  =  y  ->  R  =  S )
tfisi.g  |-  ( x  =  A  ->  R  =  T )
Assertion
Ref Expression
tfisi  |-  ( ph  ->  th )
Distinct variable groups:    x, y, T   
y, R    x, S    ch, x    ph, x, y    ps, y    x, A    th, x
Allowed substitution hints:    ps( x)    ch( y)    th( y)    A( y)    R( x)    S( y)    V( x, y)

Proof of Theorem tfisi
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3175 . 2  |-  T  C_  T
2 eqid 2177 . . . . 5  |-  T  =  T
3 tfisi.a . . . . . 6  |-  ( ph  ->  A  e.  V )
4 tfisi.b . . . . . . 7  |-  ( ph  ->  T  e.  On )
5 eqeq2 2187 . . . . . . . . . . 11  |-  ( z  =  w  ->  ( R  =  z  <->  R  =  w ) )
6 sseq1 3178 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
z  C_  T  <->  w  C_  T
) )
76anbi2d 464 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( ph  /\  z  C_  T )  <->  ( ph  /\  w  C_  T )
) )
87imbi1d 231 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( ( ph  /\  z  C_  T )  ->  ps )  <->  ( ( ph  /\  w  C_  T )  ->  ps ) ) )
95, 8imbi12d 234 . . . . . . . . . 10  |-  ( z  =  w  ->  (
( R  =  z  ->  ( ( ph  /\  z  C_  T )  ->  ps ) )  <->  ( R  =  w  ->  ( (
ph  /\  w  C_  T
)  ->  ps )
) ) )
109albidv 1824 . . . . . . . . 9  |-  ( z  =  w  ->  ( A. x ( R  =  z  ->  ( ( ph  /\  z  C_  T
)  ->  ps )
)  <->  A. x ( R  =  w  ->  (
( ph  /\  w  C_  T )  ->  ps ) ) ) )
11 tfisi.f . . . . . . . . . . . 12  |-  ( x  =  y  ->  R  =  S )
1211eqeq1d 2186 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( R  =  w  <->  S  =  w ) )
13 tfisi.d . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
1413imbi2d 230 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( ph  /\  w  C_  T )  ->  ps )  <->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )
1512, 14imbi12d 234 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( R  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ps ) )  <->  ( S  =  w  ->  ( (
ph  /\  w  C_  T
)  ->  ch )
) ) )
1615cbvalv 1917 . . . . . . . . 9  |-  ( A. x ( R  =  w  ->  ( ( ph  /\  w  C_  T
)  ->  ps )
)  <->  A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )
1710, 16bitrdi 196 . . . . . . . 8  |-  ( z  =  w  ->  ( A. x ( R  =  z  ->  ( ( ph  /\  z  C_  T
)  ->  ps )
)  <->  A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) ) )
18 eqeq2 2187 . . . . . . . . . 10  |-  ( z  =  T  ->  ( R  =  z  <->  R  =  T ) )
19 sseq1 3178 . . . . . . . . . . . 12  |-  ( z  =  T  ->  (
z  C_  T  <->  T  C_  T
) )
2019anbi2d 464 . . . . . . . . . . 11  |-  ( z  =  T  ->  (
( ph  /\  z  C_  T )  <->  ( ph  /\  T  C_  T )
) )
2120imbi1d 231 . . . . . . . . . 10  |-  ( z  =  T  ->  (
( ( ph  /\  z  C_  T )  ->  ps )  <->  ( ( ph  /\  T  C_  T )  ->  ps ) ) )
2218, 21imbi12d 234 . . . . . . . . 9  |-  ( z  =  T  ->  (
( R  =  z  ->  ( ( ph  /\  z  C_  T )  ->  ps ) )  <->  ( R  =  T  ->  ( (
ph  /\  T  C_  T
)  ->  ps )
) ) )
2322albidv 1824 . . . . . . . 8  |-  ( z  =  T  ->  ( A. x ( R  =  z  ->  ( ( ph  /\  z  C_  T
)  ->  ps )
)  <->  A. x ( R  =  T  ->  (
( ph  /\  T  C_  T )  ->  ps ) ) ) )
24 simp3l 1025 . . . . . . . . . . . 12  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  ->  ph )
25 simp2 998 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  ->  R  =  z )
26 simp1l 1021 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  -> 
z  e.  On )
2725, 26eqeltrd 2254 . . . . . . . . . . . 12  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  ->  R  e.  On )
28 simp3r 1026 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  -> 
z  C_  T )
2925, 28eqsstrd 3191 . . . . . . . . . . . 12  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  ->  R  C_  T )
30 simpl3l 1052 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  ph )
31 simpl1l 1048 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  z  e.  On )
32 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  [_ v  /  x ]_ R  e.  R
)
33 simpl2 1001 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  R  =  z )
3432, 33eleqtrd 2256 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  [_ v  /  x ]_ R  e.  z )
35 onelss 4384 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  On  ->  ( [_ v  /  x ]_ R  e.  z  ->  [_ v  /  x ]_ R  C_  z ) )
3631, 34, 35sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  [_ v  /  x ]_ R  C_  z
)
37 simpl3r 1053 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  z  C_  T )
3836, 37sstrd 3165 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  [_ v  /  x ]_ R  C_  T
)
39 eqeq2 2187 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  [_ v  /  x ]_ R  ->  ( S  =  w  <->  S  =  [_ v  /  x ]_ R ) )
40 sseq1 3178 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  [_ v  /  x ]_ R  ->  (
w  C_  T  <->  [_ v  /  x ]_ R  C_  T
) )
4140anbi2d 464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  [_ v  /  x ]_ R  ->  (
( ph  /\  w  C_  T )  <->  ( ph  /\ 
[_ v  /  x ]_ R  C_  T ) ) )
4241imbi1d 231 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  [_ v  /  x ]_ R  ->  (
( ( ph  /\  w  C_  T )  ->  ch )  <->  ( ( ph  /\ 
[_ v  /  x ]_ R  C_  T )  ->  ch ) ) )
4339, 42imbi12d 234 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  [_ v  /  x ]_ R  ->  (
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) )  <->  ( S  =  [_ v  /  x ]_ R  ->  ( (
ph  /\  [_ v  /  x ]_ R  C_  T
)  ->  ch )
) ) )
4443albidv 1824 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  [_ v  /  x ]_ R  ->  ( A. y ( S  =  w  ->  ( ( ph  /\  w  C_  T
)  ->  ch )
)  <->  A. y ( S  =  [_ v  /  x ]_ R  ->  (
( ph  /\  [_ v  /  x ]_ R  C_  T )  ->  ch ) ) ) )
45 simpl1r 1049 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )
4644, 45, 34rspcdva 2846 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  A. y
( S  =  [_ v  /  x ]_ R  ->  ( ( ph  /\  [_ v  /  x ]_ R  C_  T )  ->  ch ) ) )
47 eqidd 2178 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  [_ v  /  x ]_ R  =  [_ v  /  x ]_ R
)
48 nfcv 2319 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/_ x
y
49 nfcv 2319 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/_ x S
5048, 49, 11csbhypf 3095 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  y  ->  [_ v  /  x ]_ R  =  S )
5150eqcomd 2183 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  y  ->  S  =  [_ v  /  x ]_ R )
5251equcoms 1708 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  v  ->  S  =  [_ v  /  x ]_ R )
5352eqeq1d 2186 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  v  ->  ( S  =  [_ v  /  x ]_ R  <->  [_ v  /  x ]_ R  =  [_ v  /  x ]_ R
) )
54 nfv 1528 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ x ch
5554, 13sbhypf 2786 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  y  ->  ( [ v  /  x ] ps  <->  ch ) )
5655bicomd 141 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  y  ->  ( ch 
<->  [ v  /  x ] ps ) )
5756equcoms 1708 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  v  ->  ( ch 
<->  [ v  /  x ] ps ) )
5857imbi2d 230 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  v  ->  (
( ( ph  /\  [_ v  /  x ]_ R  C_  T )  ->  ch )  <->  ( ( ph  /\ 
[_ v  /  x ]_ R  C_  T )  ->  [ v  /  x ] ps ) ) )
5953, 58imbi12d 234 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  v  ->  (
( S  =  [_ v  /  x ]_ R  ->  ( ( ph  /\  [_ v  /  x ]_ R  C_  T )  ->  ch ) )  <->  ( [_ v  /  x ]_ R  =  [_ v  /  x ]_ R  ->  ( (
ph  /\  [_ v  /  x ]_ R  C_  T
)  ->  [ v  /  x ] ps )
) ) )
6059spv 1860 . . . . . . . . . . . . . . . . 17  |-  ( A. y ( S  = 
[_ v  /  x ]_ R  ->  ( (
ph  /\  [_ v  /  x ]_ R  C_  T
)  ->  ch )
)  ->  ( [_ v  /  x ]_ R  =  [_ v  /  x ]_ R  ->  ( (
ph  /\  [_ v  /  x ]_ R  C_  T
)  ->  [ v  /  x ] ps )
) )
6146, 47, 60sylc 62 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  ( ( ph  /\  [_ v  /  x ]_ R  C_  T
)  ->  [ v  /  x ] ps )
)
6230, 38, 61mp2and 433 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e.  On  /\  A. w  e.  z  A. y
( S  =  w  ->  ( ( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  /\  [_ v  /  x ]_ R  e.  R
)  ->  [ v  /  x ] ps )
6362ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  -> 
( [_ v  /  x ]_ R  e.  R  ->  [ v  /  x ] ps ) )
6463alrimiv 1874 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  ->  A. v ( [_ v  /  x ]_ R  e.  R  ->  [ v  /  x ] ps )
)
6550eleq1d 2246 . . . . . . . . . . . . . . 15  |-  ( v  =  y  ->  ( [_ v  /  x ]_ R  e.  R  <->  S  e.  R ) )
6665, 55imbi12d 234 . . . . . . . . . . . . . 14  |-  ( v  =  y  ->  (
( [_ v  /  x ]_ R  e.  R  ->  [ v  /  x ] ps )  <->  ( S  e.  R  ->  ch )
) )
6766cbvalv 1917 . . . . . . . . . . . . 13  |-  ( A. v ( [_ v  /  x ]_ R  e.  R  ->  [ v  /  x ] ps )  <->  A. y ( S  e.  R  ->  ch )
)
6864, 67sylib 122 . . . . . . . . . . . 12  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  ->  A. y ( S  e.  R  ->  ch )
)
69 tfisi.c . . . . . . . . . . . 12  |-  ( (
ph  /\  ( R  e.  On  /\  R  C_  T )  /\  A. y ( S  e.  R  ->  ch )
)  ->  ps )
7024, 27, 29, 68, 69syl121anc 1243 . . . . . . . . . . 11  |-  ( ( ( z  e.  On  /\ 
A. w  e.  z 
A. y ( S  =  w  ->  (
( ph  /\  w  C_  T )  ->  ch ) ) )  /\  R  =  z  /\  ( ph  /\  z  C_  T ) )  ->  ps )
71703exp 1202 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  A. w  e.  z  A. y ( S  =  w  ->  ( ( ph  /\  w  C_  T
)  ->  ch )
) )  ->  ( R  =  z  ->  ( ( ph  /\  z  C_  T )  ->  ps ) ) )
7271alrimiv 1874 . . . . . . . . 9  |-  ( ( z  e.  On  /\  A. w  e.  z  A. y ( S  =  w  ->  ( ( ph  /\  w  C_  T
)  ->  ch )
) )  ->  A. x
( R  =  z  ->  ( ( ph  /\  z  C_  T )  ->  ps ) ) )
7372ex 115 . . . . . . . 8  |-  ( z  e.  On  ->  ( A. w  e.  z  A. y ( S  =  w  ->  ( ( ph  /\  w  C_  T
)  ->  ch )
)  ->  A. x
( R  =  z  ->  ( ( ph  /\  z  C_  T )  ->  ps ) ) ) )
7417, 23, 73tfis3 4582 . . . . . . 7  |-  ( T  e.  On  ->  A. x
( R  =  T  ->  ( ( ph  /\  T  C_  T )  ->  ps ) ) )
754, 74syl 14 . . . . . 6  |-  ( ph  ->  A. x ( R  =  T  ->  (
( ph  /\  T  C_  T )  ->  ps ) ) )
76 tfisi.g . . . . . . . . 9  |-  ( x  =  A  ->  R  =  T )
7776eqeq1d 2186 . . . . . . . 8  |-  ( x  =  A  ->  ( R  =  T  <->  T  =  T ) )
78 tfisi.e . . . . . . . . 9  |-  ( x  =  A  ->  ( ps 
<->  th ) )
7978imbi2d 230 . . . . . . . 8  |-  ( x  =  A  ->  (
( ( ph  /\  T  C_  T )  ->  ps )  <->  ( ( ph  /\  T  C_  T )  ->  th ) ) )
8077, 79imbi12d 234 . . . . . . 7  |-  ( x  =  A  ->  (
( R  =  T  ->  ( ( ph  /\  T  C_  T )  ->  ps ) )  <->  ( T  =  T  ->  ( (
ph  /\  T  C_  T
)  ->  th )
) ) )
8180spcgv 2824 . . . . . 6  |-  ( A  e.  V  ->  ( A. x ( R  =  T  ->  ( ( ph  /\  T  C_  T
)  ->  ps )
)  ->  ( T  =  T  ->  ( (
ph  /\  T  C_  T
)  ->  th )
) ) )
823, 75, 81sylc 62 . . . . 5  |-  ( ph  ->  ( T  =  T  ->  ( ( ph  /\  T  C_  T )  ->  th ) ) )
832, 82mpi 15 . . . 4  |-  ( ph  ->  ( ( ph  /\  T  C_  T )  ->  th ) )
8483expd 258 . . 3  |-  ( ph  ->  ( ph  ->  ( T  C_  T  ->  th )
) )
8584pm2.43i 49 . 2  |-  ( ph  ->  ( T  C_  T  ->  th ) )
861, 85mpi 15 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978   A.wal 1351    = wceq 1353   [wsb 1762    e. wcel 2148   A.wral 2455   [_csb 3057    C_ wss 3129   Oncon0 4360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-in 3135  df-ss 3142  df-uni 3808  df-tr 4099  df-iord 4363  df-on 4365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator