ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbhypf GIF version

Theorem sbhypf 2761
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
sbhypf.1 𝑥𝜓
sbhypf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbhypf (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbhypf
StepHypRef Expression
1 vex 2715 . . 3 𝑦 ∈ V
2 eqeq1 2164 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
31, 2ceqsexv 2751 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) ↔ 𝑦 = 𝐴)
4 nfs1v 1919 . . . 4 𝑥[𝑦 / 𝑥]𝜑
5 sbhypf.1 . . . 4 𝑥𝜓
64, 5nfbi 1569 . . 3 𝑥([𝑦 / 𝑥]𝜑𝜓)
7 sbequ12 1751 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
87bicomd 140 . . . 4 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
9 sbhypf.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
108, 9sylan9bb 458 . . 3 ((𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
116, 10exlimi 1574 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
123, 11sylbir 134 1 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wnf 1440  wex 1472  [wsb 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-v 2714
This theorem is referenced by:  mob2  2892  cbvmptf  4058  tfisi  4545  ralxpf  4731  rexxpf  4732  nn0ind-raph  9276
  Copyright terms: Public domain W3C validator