ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbhypf GIF version

Theorem sbhypf 2809
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
sbhypf.1 𝑥𝜓
sbhypf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbhypf (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbhypf
StepHypRef Expression
1 vex 2763 . . 3 𝑦 ∈ V
2 eqeq1 2200 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
31, 2ceqsexv 2799 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) ↔ 𝑦 = 𝐴)
4 nfs1v 1955 . . . 4 𝑥[𝑦 / 𝑥]𝜑
5 sbhypf.1 . . . 4 𝑥𝜓
64, 5nfbi 1600 . . 3 𝑥([𝑦 / 𝑥]𝜑𝜓)
7 sbequ12 1782 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
87bicomd 141 . . . 4 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
9 sbhypf.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
108, 9sylan9bb 462 . . 3 ((𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
116, 10exlimi 1605 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
123, 11sylbir 135 1 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wnf 1471  wex 1503  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  mob2  2940  cbvmptf  4123  tfisi  4619  ralxpf  4808  rexxpf  4809  nn0ind-raph  9434
  Copyright terms: Public domain W3C validator