| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbhypf | GIF version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| sbhypf.1 | ⊢ Ⅎ𝑥𝜓 |
| sbhypf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbhypf | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . . 3 ⊢ 𝑦 ∈ V | |
| 2 | eqeq1 2212 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 3 | 1, 2 | ceqsexv 2811 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) ↔ 𝑦 = 𝐴) |
| 4 | nfs1v 1967 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 5 | sbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 4, 5 | nfbi 1612 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 7 | sbequ12 1794 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 8 | 7 | bicomd 141 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
| 9 | sbhypf.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 10 | 8, 9 | sylan9bb 462 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 11 | 6, 10 | exlimi 1617 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 12 | 3, 11 | sylbir 135 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1483 ∃wex 1515 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: mob2 2953 cbvmptf 4138 tfisi 4635 ralxpf 4824 rexxpf 4825 nn0ind-raph 9490 |
| Copyright terms: Public domain | W3C validator |