| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptf | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.) |
| Ref | Expression |
|---|---|
| cbvmptf.1 |
|
| cbvmptf.2 |
|
| cbvmptf.3 |
|
| cbvmptf.4 |
|
| cbvmptf.5 |
|
| Ref | Expression |
|---|---|
| cbvmptf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. . . 4
| |
| 2 | cbvmptf.1 |
. . . . . 6
| |
| 3 | 2 | nfcri 2366 |
. . . . 5
|
| 4 | nfs1v 1990 |
. . . . 5
| |
| 5 | 3, 4 | nfan 1611 |
. . . 4
|
| 6 | eleq1w 2290 |
. . . . 5
| |
| 7 | sbequ12 1817 |
. . . . 5
| |
| 8 | 6, 7 | anbi12d 473 |
. . . 4
|
| 9 | 1, 5, 8 | cbvopab1 4156 |
. . 3
|
| 10 | cbvmptf.2 |
. . . . . 6
| |
| 11 | 10 | nfcri 2366 |
. . . . 5
|
| 12 | cbvmptf.3 |
. . . . . . 7
| |
| 13 | 12 | nfeq2 2384 |
. . . . . 6
|
| 14 | 13 | nfsb 1997 |
. . . . 5
|
| 15 | 11, 14 | nfan 1611 |
. . . 4
|
| 16 | nfv 1574 |
. . . 4
| |
| 17 | eleq1w 2290 |
. . . . 5
| |
| 18 | cbvmptf.4 |
. . . . . . 7
| |
| 19 | 18 | nfeq2 2384 |
. . . . . 6
|
| 20 | cbvmptf.5 |
. . . . . . 7
| |
| 21 | 20 | eqeq2d 2241 |
. . . . . 6
|
| 22 | 19, 21 | sbhypf 2850 |
. . . . 5
|
| 23 | 17, 22 | anbi12d 473 |
. . . 4
|
| 24 | 15, 16, 23 | cbvopab1 4156 |
. . 3
|
| 25 | 9, 24 | eqtri 2250 |
. 2
|
| 26 | df-mpt 4146 |
. 2
| |
| 27 | df-mpt 4146 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: resmptf 5054 |
| Copyright terms: Public domain | W3C validator |