ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmptf Unicode version

Theorem cbvmptf 4137
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.)
Hypotheses
Ref Expression
cbvmptf.1  |-  F/_ x A
cbvmptf.2  |-  F/_ y A
cbvmptf.3  |-  F/_ y B
cbvmptf.4  |-  F/_ x C
cbvmptf.5  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvmptf  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)

Proof of Theorem cbvmptf
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1550 . . . 4  |-  F/ w
( x  e.  A  /\  z  =  B
)
2 cbvmptf.1 . . . . . 6  |-  F/_ x A
32nfcri 2341 . . . . 5  |-  F/ x  w  e.  A
4 nfs1v 1966 . . . . 5  |-  F/ x [ w  /  x ] z  =  B
53, 4nfan 1587 . . . 4  |-  F/ x
( w  e.  A  /\  [ w  /  x ] z  =  B )
6 eleq1w 2265 . . . . 5  |-  ( x  =  w  ->  (
x  e.  A  <->  w  e.  A ) )
7 sbequ12 1793 . . . . 5  |-  ( x  =  w  ->  (
z  =  B  <->  [ w  /  x ] z  =  B ) )
86, 7anbi12d 473 . . . 4  |-  ( x  =  w  ->  (
( x  e.  A  /\  z  =  B
)  <->  ( w  e.  A  /\  [ w  /  x ] z  =  B ) ) )
91, 5, 8cbvopab1 4116 . . 3  |-  { <. x ,  z >.  |  ( x  e.  A  /\  z  =  B ) }  =  { <. w ,  z >.  |  ( w  e.  A  /\  [ w  /  x ]
z  =  B ) }
10 cbvmptf.2 . . . . . 6  |-  F/_ y A
1110nfcri 2341 . . . . 5  |-  F/ y  w  e.  A
12 cbvmptf.3 . . . . . . 7  |-  F/_ y B
1312nfeq2 2359 . . . . . 6  |-  F/ y  z  =  B
1413nfsb 1973 . . . . 5  |-  F/ y [ w  /  x ] z  =  B
1511, 14nfan 1587 . . . 4  |-  F/ y ( w  e.  A  /\  [ w  /  x ] z  =  B )
16 nfv 1550 . . . 4  |-  F/ w
( y  e.  A  /\  z  =  C
)
17 eleq1w 2265 . . . . 5  |-  ( w  =  y  ->  (
w  e.  A  <->  y  e.  A ) )
18 cbvmptf.4 . . . . . . 7  |-  F/_ x C
1918nfeq2 2359 . . . . . 6  |-  F/ x  z  =  C
20 cbvmptf.5 . . . . . . 7  |-  ( x  =  y  ->  B  =  C )
2120eqeq2d 2216 . . . . . 6  |-  ( x  =  y  ->  (
z  =  B  <->  z  =  C ) )
2219, 21sbhypf 2821 . . . . 5  |-  ( w  =  y  ->  ( [ w  /  x ] z  =  B  <-> 
z  =  C ) )
2317, 22anbi12d 473 . . . 4  |-  ( w  =  y  ->  (
( w  e.  A  /\  [ w  /  x ] z  =  B )  <->  ( y  e.  A  /\  z  =  C ) ) )
2415, 16, 23cbvopab1 4116 . . 3  |-  { <. w ,  z >.  |  ( w  e.  A  /\  [ w  /  x ]
z  =  B ) }  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  =  C ) }
259, 24eqtri 2225 . 2  |-  { <. x ,  z >.  |  ( x  e.  A  /\  z  =  B ) }  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  =  C ) }
26 df-mpt 4106 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  z >.  |  ( x  e.  A  /\  z  =  B ) }
27 df-mpt 4106 . 2  |-  ( y  e.  A  |->  C )  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  =  C ) }
2825, 26, 273eqtr4i 2235 1  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372   [wsb 1784    e. wcel 2175   F/_wnfc 2334   {copab 4103    |-> cmpt 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-mpt 4106
This theorem is referenced by:  resmptf  5008
  Copyright terms: Public domain W3C validator