| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptf | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.) |
| Ref | Expression |
|---|---|
| cbvmptf.1 |
|
| cbvmptf.2 |
|
| cbvmptf.3 |
|
| cbvmptf.4 |
|
| cbvmptf.5 |
|
| Ref | Expression |
|---|---|
| cbvmptf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . . 4
| |
| 2 | cbvmptf.1 |
. . . . . 6
| |
| 3 | 2 | nfcri 2333 |
. . . . 5
|
| 4 | nfs1v 1958 |
. . . . 5
| |
| 5 | 3, 4 | nfan 1579 |
. . . 4
|
| 6 | eleq1w 2257 |
. . . . 5
| |
| 7 | sbequ12 1785 |
. . . . 5
| |
| 8 | 6, 7 | anbi12d 473 |
. . . 4
|
| 9 | 1, 5, 8 | cbvopab1 4106 |
. . 3
|
| 10 | cbvmptf.2 |
. . . . . 6
| |
| 11 | 10 | nfcri 2333 |
. . . . 5
|
| 12 | cbvmptf.3 |
. . . . . . 7
| |
| 13 | 12 | nfeq2 2351 |
. . . . . 6
|
| 14 | 13 | nfsb 1965 |
. . . . 5
|
| 15 | 11, 14 | nfan 1579 |
. . . 4
|
| 16 | nfv 1542 |
. . . 4
| |
| 17 | eleq1w 2257 |
. . . . 5
| |
| 18 | cbvmptf.4 |
. . . . . . 7
| |
| 19 | 18 | nfeq2 2351 |
. . . . . 6
|
| 20 | cbvmptf.5 |
. . . . . . 7
| |
| 21 | 20 | eqeq2d 2208 |
. . . . . 6
|
| 22 | 19, 21 | sbhypf 2813 |
. . . . 5
|
| 23 | 17, 22 | anbi12d 473 |
. . . 4
|
| 24 | 15, 16, 23 | cbvopab1 4106 |
. . 3
|
| 25 | 9, 24 | eqtri 2217 |
. 2
|
| 26 | df-mpt 4096 |
. 2
| |
| 27 | df-mpt 4096 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-mpt 4096 |
| This theorem is referenced by: resmptf 4996 |
| Copyright terms: Public domain | W3C validator |