ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sess1 GIF version

Theorem sess1 4339
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess1 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))

Proof of Theorem sess1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑅𝑆𝑦𝐴) → 𝑅𝑆)
21ssbrd 4048 . . . . 5 ((𝑅𝑆𝑦𝐴) → (𝑦𝑅𝑥𝑦𝑆𝑥))
32ss2rabdv 3238 . . . 4 (𝑅𝑆 → {𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥})
4 ssexg 4144 . . . . 5 (({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥} ∧ {𝑦𝐴𝑦𝑆𝑥} ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
54ex 115 . . . 4 ({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐴𝑦𝑆𝑥} → ({𝑦𝐴𝑦𝑆𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
63, 5syl 14 . . 3 (𝑅𝑆 → ({𝑦𝐴𝑦𝑆𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
76ralimdv 2545 . 2 (𝑅𝑆 → (∀𝑥𝐴 {𝑦𝐴𝑦𝑆𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
8 df-se 4335 . 2 (𝑆 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑆𝑥} ∈ V)
9 df-se 4335 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 93imtr4g 205 1 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wral 2455  {crab 2459  Vcvv 2739  wss 3131   class class class wbr 4005   Se wse 4331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2741  df-in 3137  df-ss 3144  df-br 4006  df-se 4335
This theorem is referenced by:  seeq1  4341
  Copyright terms: Public domain W3C validator