| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sess1 | GIF version | ||
| Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| sess1 | ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . . 6 ⊢ ((𝑅 ⊆ 𝑆 ∧ 𝑦 ∈ 𝐴) → 𝑅 ⊆ 𝑆) | |
| 2 | 1 | ssbrd 4102 | . . . . 5 ⊢ ((𝑅 ⊆ 𝑆 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 → 𝑦𝑆𝑥)) |
| 3 | 2 | ss2rabdv 3282 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥}) |
| 4 | ssexg 4199 | . . . . 5 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∧ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 5 | 4 | ex 115 | . . . 4 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 7 | 6 | ralimdv 2576 | . 2 ⊢ (𝑅 ⊆ 𝑆 → (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 8 | df-se 4398 | . 2 ⊢ (𝑆 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V) | |
| 9 | df-se 4398 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 10 | 7, 8, 9 | 3imtr4g 205 | 1 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 ∀wral 2486 {crab 2490 Vcvv 2776 ⊆ wss 3174 class class class wbr 4059 Se wse 4394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-in 3180 df-ss 3187 df-br 4060 df-se 4398 |
| This theorem is referenced by: seeq1 4404 |
| Copyright terms: Public domain | W3C validator |