ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprendvds Unicode version

Theorem pcprendvds 12486
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcprendvds  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcprendvds
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.1 . . . . . . 7  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
2 pclem.2 . . . . . . 7  |-  S  =  sup ( A ,  RR ,  <  )
31, 2pcprecl 12485 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
43simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
54nn0red 9322 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  RR )
65ltp1d 8976 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  <  ( S  + 
1 ) )
74nn0zd 9465 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  ZZ )
87peano2zd 9470 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  1 )  e.  ZZ )
9 zltnle 9391 . . . 4  |-  ( ( S  e.  ZZ  /\  ( S  +  1
)  e.  ZZ )  ->  ( S  < 
( S  +  1 )  <->  -.  ( S  +  1 )  <_  S ) )
107, 8, 9syl2anc 411 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  <  ( S  +  1 )  <->  -.  ( S  +  1 )  <_  S )
)
116, 10mpbid 147 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( S  +  1 )  <_  S )
12 peano2nn0 9308 . . . 4  |-  ( S  e.  NN0  ->  ( S  +  1 )  e. 
NN0 )
13 oveq2 5933 . . . . . . 7  |-  ( x  =  ( S  + 
1 )  ->  ( P ^ x )  =  ( P ^ ( S  +  1 ) ) )
1413breq1d 4044 . . . . . 6  |-  ( x  =  ( S  + 
1 )  ->  (
( P ^ x
)  ||  N  <->  ( P ^ ( S  + 
1 ) )  ||  N ) )
15 oveq2 5933 . . . . . . . . 9  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1615breq1d 4044 . . . . . . . 8  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
1716cbvrabv 2762 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
x  e.  NN0  | 
( P ^ x
)  ||  N }
181, 17eqtri 2217 . . . . . 6  |-  A  =  { x  e.  NN0  |  ( P ^ x
)  ||  N }
1914, 18elrab2 2923 . . . . 5  |-  ( ( S  +  1 )  e.  A  <->  ( ( S  +  1 )  e.  NN0  /\  ( P ^ ( S  + 
1 ) )  ||  N ) )
2019simplbi2 385 . . . 4  |-  ( ( S  +  1 )  e.  NN0  ->  ( ( P ^ ( S  +  1 ) ) 
||  N  ->  ( S  +  1 )  e.  A ) )
214, 12, 203syl 17 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  e.  A ) )
221ssrab3 3270 . . . . . . . 8  |-  A  C_  NN0
23 nn0ssz 9363 . . . . . . . 8  |-  NN0  C_  ZZ
2422, 23sstri 3193 . . . . . . 7  |-  A  C_  ZZ
2524a1i 9 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  A  C_  ZZ )
261pclemdc 12484 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
2726adantr 276 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  A. x  e.  ZZ DECID  x  e.  A )
281pclemub 12483 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
2928adantr 276 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)
30 simpr 110 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  e.  A )
3125, 27, 29, 30suprzubdc 10345 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  <_  sup ( A ,  RR ,  <  ) )
3231, 2breqtrrdi 4076 . . . 4  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  <_  S )
3332ex 115 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  + 
1 )  e.  A  ->  ( S  +  1 )  <_  S )
)
3421, 33syld 45 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  <_  S )
)
3511, 34mtod 664 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476   {crab 2479    C_ wss 3157   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   supcsup 7057   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    < clt 8080    <_ cle 8081   2c2 9060   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ^cexp 10649    || cdvds 11971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972
This theorem is referenced by:  pcprendvds2  12487  pczndvds  12512
  Copyright terms: Public domain W3C validator