ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprendvds Unicode version

Theorem pcprendvds 12728
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcprendvds  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcprendvds
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.1 . . . . . . 7  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
2 pclem.2 . . . . . . 7  |-  S  =  sup ( A ,  RR ,  <  )
31, 2pcprecl 12727 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
43simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
54nn0red 9384 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  RR )
65ltp1d 9038 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  <  ( S  + 
1 ) )
74nn0zd 9528 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  ZZ )
87peano2zd 9533 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  1 )  e.  ZZ )
9 zltnle 9453 . . . 4  |-  ( ( S  e.  ZZ  /\  ( S  +  1
)  e.  ZZ )  ->  ( S  < 
( S  +  1 )  <->  -.  ( S  +  1 )  <_  S ) )
107, 8, 9syl2anc 411 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  <  ( S  +  1 )  <->  -.  ( S  +  1 )  <_  S )
)
116, 10mpbid 147 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( S  +  1 )  <_  S )
12 peano2nn0 9370 . . . 4  |-  ( S  e.  NN0  ->  ( S  +  1 )  e. 
NN0 )
13 oveq2 5975 . . . . . . 7  |-  ( x  =  ( S  + 
1 )  ->  ( P ^ x )  =  ( P ^ ( S  +  1 ) ) )
1413breq1d 4069 . . . . . 6  |-  ( x  =  ( S  + 
1 )  ->  (
( P ^ x
)  ||  N  <->  ( P ^ ( S  + 
1 ) )  ||  N ) )
15 oveq2 5975 . . . . . . . . 9  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1615breq1d 4069 . . . . . . . 8  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
1716cbvrabv 2775 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
x  e.  NN0  | 
( P ^ x
)  ||  N }
181, 17eqtri 2228 . . . . . 6  |-  A  =  { x  e.  NN0  |  ( P ^ x
)  ||  N }
1914, 18elrab2 2939 . . . . 5  |-  ( ( S  +  1 )  e.  A  <->  ( ( S  +  1 )  e.  NN0  /\  ( P ^ ( S  + 
1 ) )  ||  N ) )
2019simplbi2 385 . . . 4  |-  ( ( S  +  1 )  e.  NN0  ->  ( ( P ^ ( S  +  1 ) ) 
||  N  ->  ( S  +  1 )  e.  A ) )
214, 12, 203syl 17 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  e.  A ) )
221ssrab3 3287 . . . . . . . 8  |-  A  C_  NN0
23 nn0ssz 9425 . . . . . . . 8  |-  NN0  C_  ZZ
2422, 23sstri 3210 . . . . . . 7  |-  A  C_  ZZ
2524a1i 9 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  A  C_  ZZ )
261pclemdc 12726 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
2726adantr 276 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  A. x  e.  ZZ DECID  x  e.  A )
281pclemub 12725 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
2928adantr 276 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)
30 simpr 110 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  e.  A )
3125, 27, 29, 30suprzubdc 10416 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  <_  sup ( A ,  RR ,  <  ) )
3231, 2breqtrrdi 4101 . . . 4  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  <_  S )
3332ex 115 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  + 
1 )  e.  A  ->  ( S  +  1 )  <_  S )
)
3421, 33syld 45 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  <_  S )
)
3511, 34mtod 665 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487   {crab 2490    C_ wss 3174   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   supcsup 7110   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    < clt 8142    <_ cle 8143   2c2 9122   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ^cexp 10720    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214
This theorem is referenced by:  pcprendvds2  12729  pczndvds  12754
  Copyright terms: Public domain W3C validator