ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprendvds Unicode version

Theorem pcprendvds 12613
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcprendvds  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcprendvds
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.1 . . . . . . 7  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
2 pclem.2 . . . . . . 7  |-  S  =  sup ( A ,  RR ,  <  )
31, 2pcprecl 12612 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
43simpld 112 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
54nn0red 9349 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  RR )
65ltp1d 9003 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  <  ( S  + 
1 ) )
74nn0zd 9493 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  ZZ )
87peano2zd 9498 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  1 )  e.  ZZ )
9 zltnle 9418 . . . 4  |-  ( ( S  e.  ZZ  /\  ( S  +  1
)  e.  ZZ )  ->  ( S  < 
( S  +  1 )  <->  -.  ( S  +  1 )  <_  S ) )
107, 8, 9syl2anc 411 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  <  ( S  +  1 )  <->  -.  ( S  +  1 )  <_  S )
)
116, 10mpbid 147 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( S  +  1 )  <_  S )
12 peano2nn0 9335 . . . 4  |-  ( S  e.  NN0  ->  ( S  +  1 )  e. 
NN0 )
13 oveq2 5952 . . . . . . 7  |-  ( x  =  ( S  + 
1 )  ->  ( P ^ x )  =  ( P ^ ( S  +  1 ) ) )
1413breq1d 4054 . . . . . 6  |-  ( x  =  ( S  + 
1 )  ->  (
( P ^ x
)  ||  N  <->  ( P ^ ( S  + 
1 ) )  ||  N ) )
15 oveq2 5952 . . . . . . . . 9  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1615breq1d 4054 . . . . . . . 8  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
1716cbvrabv 2771 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
x  e.  NN0  | 
( P ^ x
)  ||  N }
181, 17eqtri 2226 . . . . . 6  |-  A  =  { x  e.  NN0  |  ( P ^ x
)  ||  N }
1914, 18elrab2 2932 . . . . 5  |-  ( ( S  +  1 )  e.  A  <->  ( ( S  +  1 )  e.  NN0  /\  ( P ^ ( S  + 
1 ) )  ||  N ) )
2019simplbi2 385 . . . 4  |-  ( ( S  +  1 )  e.  NN0  ->  ( ( P ^ ( S  +  1 ) ) 
||  N  ->  ( S  +  1 )  e.  A ) )
214, 12, 203syl 17 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  e.  A ) )
221ssrab3 3279 . . . . . . . 8  |-  A  C_  NN0
23 nn0ssz 9390 . . . . . . . 8  |-  NN0  C_  ZZ
2422, 23sstri 3202 . . . . . . 7  |-  A  C_  ZZ
2524a1i 9 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  A  C_  ZZ )
261pclemdc 12611 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
2726adantr 276 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  A. x  e.  ZZ DECID  x  e.  A )
281pclemub 12610 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
2928adantr 276 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)
30 simpr 110 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  e.  A )
3125, 27, 29, 30suprzubdc 10379 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  <_  sup ( A ,  RR ,  <  ) )
3231, 2breqtrrdi 4086 . . . 4  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  <_  S )
3332ex 115 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  + 
1 )  e.  A  ->  ( S  +  1 )  <_  S )
)
3421, 33syld 45 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  <_  S )
)
3511, 34mtod 665 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   A.wral 2484   E.wrex 2485   {crab 2488    C_ wss 3166   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   supcsup 7084   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    < clt 8107    <_ cle 8108   2c2 9087   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   ^cexp 10683    || cdvds 12098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099
This theorem is referenced by:  pcprendvds2  12614  pczndvds  12639
  Copyright terms: Public domain W3C validator