ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprendvds Unicode version

Theorem pcprendvds 12181
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcprendvds  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcprendvds
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.1 . . . . . . 7  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
2 pclem.2 . . . . . . 7  |-  S  =  sup ( A ,  RR ,  <  )
31, 2pcprecl 12180 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
43simpld 111 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
54nn0red 9150 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  RR )
65ltp1d 8807 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  <  ( S  + 
1 ) )
74nn0zd 9290 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  ZZ )
87peano2zd 9295 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  1 )  e.  ZZ )
9 zltnle 9219 . . . 4  |-  ( ( S  e.  ZZ  /\  ( S  +  1
)  e.  ZZ )  ->  ( S  < 
( S  +  1 )  <->  -.  ( S  +  1 )  <_  S ) )
107, 8, 9syl2anc 409 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  <  ( S  +  1 )  <->  -.  ( S  +  1 )  <_  S )
)
116, 10mpbid 146 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( S  +  1 )  <_  S )
12 peano2nn0 9136 . . . 4  |-  ( S  e.  NN0  ->  ( S  +  1 )  e. 
NN0 )
13 oveq2 5835 . . . . . . 7  |-  ( x  =  ( S  + 
1 )  ->  ( P ^ x )  =  ( P ^ ( S  +  1 ) ) )
1413breq1d 3977 . . . . . 6  |-  ( x  =  ( S  + 
1 )  ->  (
( P ^ x
)  ||  N  <->  ( P ^ ( S  + 
1 ) )  ||  N ) )
15 oveq2 5835 . . . . . . . . 9  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1615breq1d 3977 . . . . . . . 8  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
1716cbvrabv 2711 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
x  e.  NN0  | 
( P ^ x
)  ||  N }
181, 17eqtri 2178 . . . . . 6  |-  A  =  { x  e.  NN0  |  ( P ^ x
)  ||  N }
1914, 18elrab2 2871 . . . . 5  |-  ( ( S  +  1 )  e.  A  <->  ( ( S  +  1 )  e.  NN0  /\  ( P ^ ( S  + 
1 ) )  ||  N ) )
2019simplbi2 383 . . . 4  |-  ( ( S  +  1 )  e.  NN0  ->  ( ( P ^ ( S  +  1 ) ) 
||  N  ->  ( S  +  1 )  e.  A ) )
214, 12, 203syl 17 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  e.  A ) )
221ssrab3 3214 . . . . . . . 8  |-  A  C_  NN0
23 nn0ssz 9191 . . . . . . . 8  |-  NN0  C_  ZZ
2422, 23sstri 3137 . . . . . . 7  |-  A  C_  ZZ
2524a1i 9 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  A  C_  ZZ )
261pclemdc 12179 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
2726adantr 274 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  A. x  e.  ZZ DECID  x  e.  A )
281pclemub 12178 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
2928adantr 274 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)
30 simpr 109 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  e.  A )
3125, 27, 29, 30suprzubdc 11852 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  <_  sup ( A ,  RR ,  <  ) )
3231, 2breqtrrdi 4009 . . . 4  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( S  +  1 )  e.  A )  ->  ( S  +  1 )  <_  S )
3332ex 114 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  + 
1 )  e.  A  ->  ( S  +  1 )  <_  S )
)
3421, 33syld 45 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  <_  S )
)
3511, 34mtod 653 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   E.wrex 2436   {crab 2439    C_ wss 3102   class class class wbr 3967   ` cfv 5173  (class class class)co 5827   supcsup 6929   RRcr 7734   0cc0 7735   1c1 7736    + caddc 7738    < clt 7915    <_ cle 7916   2c2 8890   NN0cn0 9096   ZZcz 9173   ZZ>=cuz 9445   ^cexp 10428    || cdvds 11695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696
This theorem is referenced by:  pcprendvds2  12182  pczndvds  12205
  Copyright terms: Public domain W3C validator