ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvga Unicode version

Theorem algcvga 11460
Description: The countdown function  C remains  0 after  N steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1  |-  F : S
--> S
algcvga.2  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvga.3  |-  C : S
--> NN0
algcvga.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvga.5  |-  N  =  ( C `  A
)
Assertion
Ref Expression
algcvga  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Distinct variable groups:    z, C    z, F    z, R    z, S
Allowed substitution hints:    A( z)    K( z)    N( z)

Proof of Theorem algcvga
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3  |-  N  =  ( C `  A
)
2 algcvga.3 . . . 4  |-  C : S
--> NN0
32ffvelrni 5472 . . 3  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
41, 3syl5eqel 2181 . 2  |-  ( A  e.  S  ->  N  e.  NN0 )
5 nn0z 8868 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 eluz1 9122 . . . . 5  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  <->  ( K  e.  ZZ  /\  N  <_  K ) ) )
7 2fveq3 5345 . . . . . . . . 9  |-  ( m  =  N  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  N )
) )
87eqeq1d 2103 . . . . . . . 8  |-  ( m  =  N  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  N ) )  =  0 ) )
98imbi2d 229 . . . . . . 7  |-  ( m  =  N  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  N )
)  =  0 ) ) )
10 2fveq3 5345 . . . . . . . . 9  |-  ( m  =  k  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  k )
) )
1110eqeq1d 2103 . . . . . . . 8  |-  ( m  =  k  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  k ) )  =  0 ) )
1211imbi2d 229 . . . . . . 7  |-  ( m  =  k  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 ) ) )
13 2fveq3 5345 . . . . . . . . 9  |-  ( m  =  ( k  +  1 )  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  ( k  +  1 ) ) ) )
1413eqeq1d 2103 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
1514imbi2d 229 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
16 2fveq3 5345 . . . . . . . . 9  |-  ( m  =  K  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  K )
) )
1716eqeq1d 2103 . . . . . . . 8  |-  ( m  =  K  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  K ) )  =  0 ) )
1817imbi2d 229 . . . . . . 7  |-  ( m  =  K  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
19 algcvga.1 . . . . . . . . 9  |-  F : S
--> S
20 algcvga.2 . . . . . . . . 9  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
21 algcvga.4 . . . . . . . . 9  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
2219, 20, 2, 21, 1algcvg 11457 . . . . . . . 8  |-  ( A  e.  S  ->  ( C `  ( R `  N ) )  =  0 )
2322a1i 9 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( A  e.  S  ->  ( C `  ( R `
 N ) )  =  0 ) )
24 nn0ge0 8796 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  0  <_  N )
2524adantr 271 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  0  <_  N )
26 nn0re 8780 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  N  e.  RR )
27 zre 8852 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  k  e.  RR )
28 0re 7585 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
29 letr 7665 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  k  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  k )  ->  0  <_  k
) )
3028, 29mp3an1 1267 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  k  e.  RR )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3126, 27, 30syl2an 284 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3225, 31mpand 421 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  0  <_  k )
)
33 elnn0z 8861 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
3433simplbi2 378 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  (
0  <_  k  ->  k  e.  NN0 ) )
3534adantl 272 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( 0  <_  k  ->  k  e.  NN0 )
)
3632, 35syld 45 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
374, 36sylan 278 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
3837impr 372 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  ( k  e.  ZZ  /\  N  <_  k )
)  ->  k  e.  NN0 )
3938expcom 115 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  N  <_  k )  -> 
( A  e.  S  ->  k  e.  NN0 )
)
40393adant1 964 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  k  e.  NN0 ) )
4140ancld 319 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( A  e.  S  /\  k  e.  NN0 ) ) )
42 nn0uz 9152 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
43 0zd 8860 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  0  e.  ZZ )
44 id 19 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  A  e.  S )
4519a1i 9 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  F : S --> S )
4642, 20, 43, 44, 45algrf 11454 . . . . . . . . . . . 12  |-  ( A  e.  S  ->  R : NN0 --> S )
4746ffvelrnda 5473 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
48 2fveq3 5345 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  ( F `  z ) )  =  ( C `  ( F `  ( R `  k ) ) ) )
4948neeq1d 2280 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  =/=  0  <->  ( C `  ( F `  ( R `  k
) ) )  =/=  0 ) )
50 fveq2 5340 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  z )  =  ( C `  ( R `  k ) ) )
5148, 50breq12d 3880 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  <  ( C `  z )  <->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) )
5249, 51imbi12d 233 . . . . . . . . . . . . 13  |-  ( z  =  ( R `  k )  ->  (
( ( C `  ( F `  z ) )  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) )  <->  ( ( C `  ( F `  ( R `  k
) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) ) )
5352, 21vtoclga 2699 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( F `  ( R `  k ) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k
) ) )  < 
( C `  ( R `  k )
) ) )
5419, 2algcvgb 11459 . . . . . . . . . . . . 13  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  <->  ( (
( C `  ( R `  k )
)  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) ) )
55 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( C `  ( R `  k ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )  ->  ( ( C `
 ( R `  k ) )  =  0  ->  ( C `  ( F `  ( R `  k )
) )  =  0 ) )
5654, 55syl6bi 162 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) )
5753, 56mpd 13 . . . . . . . . . . 11  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
5847, 57syl 14 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
5942, 20, 43, 44, 45algrp1 11455 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
6059fveqeq2d 5348 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  ( k  +  1 ) ) )  =  0  <->  ( C `  ( F `  ( R `  k
) ) )  =  0 ) )
6158, 60sylibrd 168 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
6241, 61syl6 33 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( ( C `  ( R `  k )
)  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
6362a2d 26 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  (
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 )  ->  ( A  e.  S  ->  ( C `  ( R `  (
k  +  1 ) ) )  =  0 ) ) )
649, 12, 15, 18, 23, 63uzind 8956 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) )
65643expib 1149 . . . . 5  |-  ( N  e.  ZZ  ->  (
( K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
666, 65sylbid 149 . . . 4  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) ) )
675, 66syl 14 . . 3  |-  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( A  e.  S  ->  ( C `
 ( R `  K ) )  =  0 ) ) )
6867com3r 79 . 2  |-  ( A  e.  S  ->  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) ) )
694, 68mpd 13 1  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 927    = wceq 1296    e. wcel 1445    =/= wne 2262   {csn 3466   class class class wbr 3867    X. cxp 4465    o. ccom 4471   -->wf 5045   ` cfv 5049  (class class class)co 5690   1stc1st 5947   RRcr 7446   0cc0 7447   1c1 7448    + caddc 7450    < clt 7619    <_ cle 7620   NN0cn0 8771   ZZcz 8848   ZZ>=cuz 9118    seqcseq 10000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-seqfrec 10001
This theorem is referenced by:  algfx  11461  eucalgcvga  11467
  Copyright terms: Public domain W3C validator