ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvga Unicode version

Theorem algcvga 12034
Description: The countdown function  C remains  0 after  N steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1  |-  F : S
--> S
algcvga.2  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvga.3  |-  C : S
--> NN0
algcvga.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvga.5  |-  N  =  ( C `  A
)
Assertion
Ref Expression
algcvga  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Distinct variable groups:    z, C    z, F    z, R    z, S
Allowed substitution hints:    A( z)    K( z)    N( z)

Proof of Theorem algcvga
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3  |-  N  =  ( C `  A
)
2 algcvga.3 . . . 4  |-  C : S
--> NN0
32ffvelcdmi 5646 . . 3  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
41, 3eqeltrid 2264 . 2  |-  ( A  e.  S  ->  N  e.  NN0 )
5 nn0z 9262 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 eluz1 9521 . . . . 5  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  <->  ( K  e.  ZZ  /\  N  <_  K ) ) )
7 2fveq3 5516 . . . . . . . . 9  |-  ( m  =  N  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  N )
) )
87eqeq1d 2186 . . . . . . . 8  |-  ( m  =  N  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  N ) )  =  0 ) )
98imbi2d 230 . . . . . . 7  |-  ( m  =  N  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  N )
)  =  0 ) ) )
10 2fveq3 5516 . . . . . . . . 9  |-  ( m  =  k  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  k )
) )
1110eqeq1d 2186 . . . . . . . 8  |-  ( m  =  k  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  k ) )  =  0 ) )
1211imbi2d 230 . . . . . . 7  |-  ( m  =  k  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 ) ) )
13 2fveq3 5516 . . . . . . . . 9  |-  ( m  =  ( k  +  1 )  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  ( k  +  1 ) ) ) )
1413eqeq1d 2186 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
1514imbi2d 230 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
16 2fveq3 5516 . . . . . . . . 9  |-  ( m  =  K  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  K )
) )
1716eqeq1d 2186 . . . . . . . 8  |-  ( m  =  K  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  K ) )  =  0 ) )
1817imbi2d 230 . . . . . . 7  |-  ( m  =  K  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
19 algcvga.1 . . . . . . . . 9  |-  F : S
--> S
20 algcvga.2 . . . . . . . . 9  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
21 algcvga.4 . . . . . . . . 9  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
2219, 20, 2, 21, 1algcvg 12031 . . . . . . . 8  |-  ( A  e.  S  ->  ( C `  ( R `  N ) )  =  0 )
2322a1i 9 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( A  e.  S  ->  ( C `  ( R `
 N ) )  =  0 ) )
24 nn0ge0 9190 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  0  <_  N )
2524adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  0  <_  N )
26 nn0re 9174 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  N  e.  RR )
27 zre 9246 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  k  e.  RR )
28 0re 7948 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
29 letr 8030 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  k  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  k )  ->  0  <_  k
) )
3028, 29mp3an1 1324 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  k  e.  RR )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3126, 27, 30syl2an 289 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3225, 31mpand 429 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  0  <_  k )
)
33 elnn0z 9255 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
3433simplbi2 385 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  (
0  <_  k  ->  k  e.  NN0 ) )
3534adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( 0  <_  k  ->  k  e.  NN0 )
)
3632, 35syld 45 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
374, 36sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
3837impr 379 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  ( k  e.  ZZ  /\  N  <_  k )
)  ->  k  e.  NN0 )
3938expcom 116 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  N  <_  k )  -> 
( A  e.  S  ->  k  e.  NN0 )
)
40393adant1 1015 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  k  e.  NN0 ) )
4140ancld 325 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( A  e.  S  /\  k  e.  NN0 ) ) )
42 nn0uz 9551 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
43 0zd 9254 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  0  e.  ZZ )
44 id 19 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  A  e.  S )
4519a1i 9 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  F : S --> S )
4642, 20, 43, 44, 45algrf 12028 . . . . . . . . . . . 12  |-  ( A  e.  S  ->  R : NN0 --> S )
4746ffvelcdmda 5647 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
48 2fveq3 5516 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  ( F `  z ) )  =  ( C `  ( F `  ( R `  k ) ) ) )
4948neeq1d 2365 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  =/=  0  <->  ( C `  ( F `  ( R `  k
) ) )  =/=  0 ) )
50 fveq2 5511 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  z )  =  ( C `  ( R `  k ) ) )
5148, 50breq12d 4013 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  <  ( C `  z )  <->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) )
5249, 51imbi12d 234 . . . . . . . . . . . . 13  |-  ( z  =  ( R `  k )  ->  (
( ( C `  ( F `  z ) )  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) )  <->  ( ( C `  ( F `  ( R `  k
) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) ) )
5352, 21vtoclga 2803 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( F `  ( R `  k ) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k
) ) )  < 
( C `  ( R `  k )
) ) )
5419, 2algcvgb 12033 . . . . . . . . . . . . 13  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  <->  ( (
( C `  ( R `  k )
)  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) ) )
55 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( C `  ( R `  k ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )  ->  ( ( C `
 ( R `  k ) )  =  0  ->  ( C `  ( F `  ( R `  k )
) )  =  0 ) )
5654, 55syl6bi 163 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) )
5753, 56mpd 13 . . . . . . . . . . 11  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
5847, 57syl 14 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
5942, 20, 43, 44, 45algrp1 12029 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
6059fveqeq2d 5519 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  ( k  +  1 ) ) )  =  0  <->  ( C `  ( F `  ( R `  k
) ) )  =  0 ) )
6158, 60sylibrd 169 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
6241, 61syl6 33 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( ( C `  ( R `  k )
)  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
6362a2d 26 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  (
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 )  ->  ( A  e.  S  ->  ( C `  ( R `  (
k  +  1 ) ) )  =  0 ) ) )
649, 12, 15, 18, 23, 63uzind 9353 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) )
65643expib 1206 . . . . 5  |-  ( N  e.  ZZ  ->  (
( K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
666, 65sylbid 150 . . . 4  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) ) )
675, 66syl 14 . . 3  |-  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( A  e.  S  ->  ( C `
 ( R `  K ) )  =  0 ) ) )
6867com3r 79 . 2  |-  ( A  e.  S  ->  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) ) )
694, 68mpd 13 1  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   {csn 3591   class class class wbr 4000    X. cxp 4621    o. ccom 4627   -->wf 5208   ` cfv 5212  (class class class)co 5869   1stc1st 6133   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517    seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432
This theorem is referenced by:  algfx  12035  eucalgcvga  12041
  Copyright terms: Public domain W3C validator