ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p1modz1 Unicode version

Theorem p1modz1 11959
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
Assertion
Ref Expression
p1modz1  |-  ( ( M  ||  A  /\  1  <  M )  -> 
( ( A  + 
1 )  mod  M
)  =  1 )

Proof of Theorem p1modz1
StepHypRef Expression
1 dvdszrcl 11957 . . 3  |-  ( M 
||  A  ->  ( M  e.  ZZ  /\  A  e.  ZZ ) )
2 0red 8027 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
0  e.  RR )
3 1red 8041 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
1  e.  RR )
4 zre 9330 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  RR )
54adantr 276 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  ->  M  e.  RR )
62, 3, 53jca 1179 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
( 0  e.  RR  /\  1  e.  RR  /\  M  e.  RR )
)
7 0lt1 8153 . . . . . . . . . . . . . . 15  |-  0  <  1
87a1i 9 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  0  <  1 )
98anim1i 340 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
( 0  <  1  /\  1  <  M ) )
10 lttr 8100 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  M  e.  RR )  ->  (
( 0  <  1  /\  1  <  M )  ->  0  <  M
) )
116, 9, 10sylc 62 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
0  <  M )
1211ex 115 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
1  <  M  ->  0  <  M ) )
13 elnnz 9336 . . . . . . . . . . . 12  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
1413simplbi2 385 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
0  <  M  ->  M  e.  NN ) )
1512, 14syld 45 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
1  <  M  ->  M  e.  NN ) )
1615adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  M  ->  M  e.  NN ) )
1716imp 124 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  M  e.  NN )
18 dvdsmod0 11958 . . . . . . . 8  |-  ( ( M  e.  NN  /\  M  ||  A )  -> 
( A  mod  M
)  =  0 )
1917, 18sylan 283 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  M  ||  A )  ->  ( A  mod  M )  =  0 )
2019ex 115 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( M  ||  A  ->  ( A  mod  M )  =  0 ) )
21 oveq1 5929 . . . . . . . . . . 11  |-  ( ( A  mod  M )  =  0  ->  (
( A  mod  M
)  +  1 )  =  ( 0  +  1 ) )
22 0p1e1 9104 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
2321, 22eqtrdi 2245 . . . . . . . . . 10  |-  ( ( A  mod  M )  =  0  ->  (
( A  mod  M
)  +  1 )  =  1 )
2423oveq1d 5937 . . . . . . . . 9  |-  ( ( A  mod  M )  =  0  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( 1  mod  M
) )
2524adantl 277 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( 1  mod  M
) )
26 zq 9700 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
2726ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  A  e.  QQ )
28 1z 9352 . . . . . . . . . 10  |-  1  e.  ZZ
29 zq 9700 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3028, 29mp1i 10 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  1  e.  QQ )
31 zq 9700 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
3231ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  M  e.  QQ )
3311ad4ant13 513 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  0  <  M )
34 modqaddmod 10455 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  1  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
3527, 30, 32, 33, 34syl22anc 1250 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( ( A  + 
1 )  mod  M
) )
3631adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  M  e.  QQ )
37 q1mod 10448 . . . . . . . . . 10  |-  ( ( M  e.  QQ  /\  1  <  M )  -> 
( 1  mod  M
)  =  1 )
3836, 37sylan 283 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( 1  mod  M )  =  1 )
3938adantr 276 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
1  mod  M )  =  1 )
4025, 35, 393eqtr3d 2237 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( A  +  1 )  mod  M )  =  1 )
4140ex 115 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( ( A  mod  M )  =  0  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4220, 41syld 45 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( M  ||  A  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4342ex 115 . . . 4  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  M  ->  ( M  ||  A  ->  ( ( A  + 
1 )  mod  M
)  =  1 ) ) )
4443com23 78 . . 3  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( M  ||  A  ->  ( 1  <  M  ->  ( ( A  + 
1 )  mod  M
)  =  1 ) ) )
451, 44mpcom 36 . 2  |-  ( M 
||  A  ->  (
1  <  M  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4645imp 124 1  |-  ( ( M  ||  A  /\  1  <  M )  -> 
( ( A  + 
1 )  mod  M
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061   NNcn 8990   ZZcz 9326   QQcq 9693    mod cmo 10414    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415  df-dvds 11953
This theorem is referenced by:  lgslem4  15244
  Copyright terms: Public domain W3C validator