ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p1modz1 Unicode version

Theorem p1modz1 12305
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
Assertion
Ref Expression
p1modz1  |-  ( ( M  ||  A  /\  1  <  M )  -> 
( ( A  + 
1 )  mod  M
)  =  1 )

Proof of Theorem p1modz1
StepHypRef Expression
1 dvdszrcl 12303 . . 3  |-  ( M 
||  A  ->  ( M  e.  ZZ  /\  A  e.  ZZ ) )
2 0red 8147 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
0  e.  RR )
3 1red 8161 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
1  e.  RR )
4 zre 9450 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  RR )
54adantr 276 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  ->  M  e.  RR )
62, 3, 53jca 1201 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
( 0  e.  RR  /\  1  e.  RR  /\  M  e.  RR )
)
7 0lt1 8273 . . . . . . . . . . . . . . 15  |-  0  <  1
87a1i 9 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  0  <  1 )
98anim1i 340 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
( 0  <  1  /\  1  <  M ) )
10 lttr 8220 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  M  e.  RR )  ->  (
( 0  <  1  /\  1  <  M )  ->  0  <  M
) )
116, 9, 10sylc 62 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
0  <  M )
1211ex 115 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
1  <  M  ->  0  <  M ) )
13 elnnz 9456 . . . . . . . . . . . 12  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
1413simplbi2 385 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
0  <  M  ->  M  e.  NN ) )
1512, 14syld 45 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
1  <  M  ->  M  e.  NN ) )
1615adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  M  ->  M  e.  NN ) )
1716imp 124 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  M  e.  NN )
18 dvdsmod0 12304 . . . . . . . 8  |-  ( ( M  e.  NN  /\  M  ||  A )  -> 
( A  mod  M
)  =  0 )
1917, 18sylan 283 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  M  ||  A )  ->  ( A  mod  M )  =  0 )
2019ex 115 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( M  ||  A  ->  ( A  mod  M )  =  0 ) )
21 oveq1 6008 . . . . . . . . . . 11  |-  ( ( A  mod  M )  =  0  ->  (
( A  mod  M
)  +  1 )  =  ( 0  +  1 ) )
22 0p1e1 9224 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
2321, 22eqtrdi 2278 . . . . . . . . . 10  |-  ( ( A  mod  M )  =  0  ->  (
( A  mod  M
)  +  1 )  =  1 )
2423oveq1d 6016 . . . . . . . . 9  |-  ( ( A  mod  M )  =  0  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( 1  mod  M
) )
2524adantl 277 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( 1  mod  M
) )
26 zq 9821 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
2726ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  A  e.  QQ )
28 1z 9472 . . . . . . . . . 10  |-  1  e.  ZZ
29 zq 9821 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3028, 29mp1i 10 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  1  e.  QQ )
31 zq 9821 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
3231ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  M  e.  QQ )
3311ad4ant13 513 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  0  <  M )
34 modqaddmod 10585 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  1  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
3527, 30, 32, 33, 34syl22anc 1272 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( ( A  + 
1 )  mod  M
) )
3631adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  M  e.  QQ )
37 q1mod 10578 . . . . . . . . . 10  |-  ( ( M  e.  QQ  /\  1  <  M )  -> 
( 1  mod  M
)  =  1 )
3836, 37sylan 283 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( 1  mod  M )  =  1 )
3938adantr 276 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
1  mod  M )  =  1 )
4025, 35, 393eqtr3d 2270 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( A  +  1 )  mod  M )  =  1 )
4140ex 115 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( ( A  mod  M )  =  0  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4220, 41syld 45 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( M  ||  A  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4342ex 115 . . . 4  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  M  ->  ( M  ||  A  ->  ( ( A  + 
1 )  mod  M
)  =  1 ) ) )
4443com23 78 . . 3  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( M  ||  A  ->  ( 1  <  M  ->  ( ( A  + 
1 )  mod  M
)  =  1 ) ) )
451, 44mpcom 36 . 2  |-  ( M 
||  A  ->  (
1  <  M  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4645imp 124 1  |-  ( ( M  ||  A  /\  1  <  M )  -> 
( ( A  + 
1 )  mod  M
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181   NNcn 9110   ZZcz 9446   QQcq 9814    mod cmo 10544    || cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-q 9815  df-rp 9850  df-fl 10490  df-mod 10545  df-dvds 12299
This theorem is referenced by:  lgslem4  15682
  Copyright terms: Public domain W3C validator