ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p1modz1 Unicode version

Theorem p1modz1 11940
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
Assertion
Ref Expression
p1modz1  |-  ( ( M  ||  A  /\  1  <  M )  -> 
( ( A  + 
1 )  mod  M
)  =  1 )

Proof of Theorem p1modz1
StepHypRef Expression
1 dvdszrcl 11938 . . 3  |-  ( M 
||  A  ->  ( M  e.  ZZ  /\  A  e.  ZZ ) )
2 0red 8022 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
0  e.  RR )
3 1red 8036 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
1  e.  RR )
4 zre 9324 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  RR )
54adantr 276 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  1  <  M )  ->  M  e.  RR )
62, 3, 53jca 1179 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
( 0  e.  RR  /\  1  e.  RR  /\  M  e.  RR )
)
7 0lt1 8148 . . . . . . . . . . . . . . 15  |-  0  <  1
87a1i 9 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  0  <  1 )
98anim1i 340 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
( 0  <  1  /\  1  <  M ) )
10 lttr 8095 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  M  e.  RR )  ->  (
( 0  <  1  /\  1  <  M )  ->  0  <  M
) )
116, 9, 10sylc 62 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  1  <  M )  -> 
0  <  M )
1211ex 115 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
1  <  M  ->  0  <  M ) )
13 elnnz 9330 . . . . . . . . . . . 12  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
1413simplbi2 385 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
0  <  M  ->  M  e.  NN ) )
1512, 14syld 45 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
1  <  M  ->  M  e.  NN ) )
1615adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  M  ->  M  e.  NN ) )
1716imp 124 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  M  e.  NN )
18 dvdsmod0 11939 . . . . . . . 8  |-  ( ( M  e.  NN  /\  M  ||  A )  -> 
( A  mod  M
)  =  0 )
1917, 18sylan 283 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  M  ||  A )  ->  ( A  mod  M )  =  0 )
2019ex 115 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( M  ||  A  ->  ( A  mod  M )  =  0 ) )
21 oveq1 5926 . . . . . . . . . . 11  |-  ( ( A  mod  M )  =  0  ->  (
( A  mod  M
)  +  1 )  =  ( 0  +  1 ) )
22 0p1e1 9098 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
2321, 22eqtrdi 2242 . . . . . . . . . 10  |-  ( ( A  mod  M )  =  0  ->  (
( A  mod  M
)  +  1 )  =  1 )
2423oveq1d 5934 . . . . . . . . 9  |-  ( ( A  mod  M )  =  0  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( 1  mod  M
) )
2524adantl 277 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( 1  mod  M
) )
26 zq 9694 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
2726ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  A  e.  QQ )
28 1z 9346 . . . . . . . . . 10  |-  1  e.  ZZ
29 zq 9694 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3028, 29mp1i 10 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  1  e.  QQ )
31 zq 9694 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
3231ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  M  e.  QQ )
3311ad4ant13 513 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  0  <  M )
34 modqaddmod 10437 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  1  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
3527, 30, 32, 33, 34syl22anc 1250 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( ( A  + 
1 )  mod  M
) )
3631adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  M  e.  QQ )
37 q1mod 10430 . . . . . . . . . 10  |-  ( ( M  e.  QQ  /\  1  <  M )  -> 
( 1  mod  M
)  =  1 )
3836, 37sylan 283 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( 1  mod  M )  =  1 )
3938adantr 276 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
1  mod  M )  =  1 )
4025, 35, 393eqtr3d 2234 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M )  /\  ( A  mod  M )  =  0 )  ->  (
( A  +  1 )  mod  M )  =  1 )
4140ex 115 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( ( A  mod  M )  =  0  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4220, 41syld 45 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ )  /\  1  <  M
)  ->  ( M  ||  A  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4342ex 115 . . . 4  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  <  M  ->  ( M  ||  A  ->  ( ( A  + 
1 )  mod  M
)  =  1 ) ) )
4443com23 78 . . 3  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( M  ||  A  ->  ( 1  <  M  ->  ( ( A  + 
1 )  mod  M
)  =  1 ) ) )
451, 44mpcom 36 . 2  |-  ( M 
||  A  ->  (
1  <  M  ->  ( ( A  +  1 )  mod  M )  =  1 ) )
4645imp 124 1  |-  ( ( M  ||  A  /\  1  <  M )  -> 
( ( A  + 
1 )  mod  M
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4030  (class class class)co 5919   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    < clt 8056   NNcn 8984   ZZcz 9320   QQcq 9687    mod cmo 10396    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342  df-mod 10397  df-dvds 11934
This theorem is referenced by:  lgslem4  15160
  Copyright terms: Public domain W3C validator