ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo1fzo0n0 Unicode version

Theorem fzo1fzo0n0 9991
Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
Assertion
Ref Expression
fzo1fzo0n0  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  ( 0..^ N )  /\  K  =/=  0
) )

Proof of Theorem fzo1fzo0n0
StepHypRef Expression
1 elfzo2 9958 . . 3  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  ( ZZ>= `  1 )  /\  N  e.  ZZ  /\  K  <  N ) )
2 elnnuz 9386 . . . . . . 7  |-  ( K  e.  NN  <->  K  e.  ( ZZ>= `  1 )
)
3 nnnn0 9008 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  K  e.  NN0 )
43adantr 274 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  N  e.  ZZ )  ->  K  e.  NN0 )
54adantr 274 . . . . . . . . 9  |-  ( ( ( K  e.  NN  /\  N  e.  ZZ )  /\  K  <  N
)  ->  K  e.  NN0 )
6 nngt0 8769 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  0  <  K )
7 0red 7791 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  0  e.  RR )
8 nnre 8751 . . . . . . . . . . . . . . . 16  |-  ( K  e.  NN  ->  K  e.  RR )
98adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  K  e.  RR )
10 zre 9082 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  N  e.  RR )
1110adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  N  e.  RR )
12 lttr 7862 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  K  /\  K  <  N )  ->  0  <  N
) )
137, 9, 11, 12syl3anc 1217 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  ( ( 0  < 
K  /\  K  <  N )  ->  0  <  N ) )
14 elnnz 9088 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
1514simplbi2 383 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  (
0  <  N  ->  N  e.  NN ) )
1615adantr 274 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  ( 0  <  N  ->  N  e.  NN ) )
1713, 16syld 45 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  ( ( 0  < 
K  /\  K  <  N )  ->  N  e.  NN ) )
1817exp4b 365 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( K  e.  NN  ->  ( 0  <  K  -> 
( K  <  N  ->  N  e.  NN ) ) ) )
1918com13 80 . . . . . . . . . . 11  |-  ( 0  <  K  ->  ( K  e.  NN  ->  ( N  e.  ZZ  ->  ( K  <  N  ->  N  e.  NN )
) ) )
206, 19mpcom 36 . . . . . . . . . 10  |-  ( K  e.  NN  ->  ( N  e.  ZZ  ->  ( K  <  N  ->  N  e.  NN )
) )
2120imp31 254 . . . . . . . . 9  |-  ( ( ( K  e.  NN  /\  N  e.  ZZ )  /\  K  <  N
)  ->  N  e.  NN )
22 simpr 109 . . . . . . . . 9  |-  ( ( ( K  e.  NN  /\  N  e.  ZZ )  /\  K  <  N
)  ->  K  <  N )
235, 21, 223jca 1162 . . . . . . . 8  |-  ( ( ( K  e.  NN  /\  N  e.  ZZ )  /\  K  <  N
)  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) )
2423exp31 362 . . . . . . 7  |-  ( K  e.  NN  ->  ( N  e.  ZZ  ->  ( K  <  N  -> 
( K  e.  NN0  /\  N  e.  NN  /\  K  <  N ) ) ) )
252, 24sylbir 134 . . . . . 6  |-  ( K  e.  ( ZZ>= `  1
)  ->  ( N  e.  ZZ  ->  ( K  <  N  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) ) ) )
26253imp 1176 . . . . 5  |-  ( ( K  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ  /\  K  < 
N )  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) )
27 elfzo0 9990 . . . . 5  |-  ( K  e.  ( 0..^ N )  <->  ( K  e. 
NN0  /\  N  e.  NN  /\  K  <  N
) )
2826, 27sylibr 133 . . . 4  |-  ( ( K  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ  /\  K  < 
N )  ->  K  e.  ( 0..^ N ) )
29 nnne0 8772 . . . . . 6  |-  ( K  e.  NN  ->  K  =/=  0 )
302, 29sylbir 134 . . . . 5  |-  ( K  e.  ( ZZ>= `  1
)  ->  K  =/=  0 )
31303ad2ant1 1003 . . . 4  |-  ( ( K  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ  /\  K  < 
N )  ->  K  =/=  0 )
3228, 31jca 304 . . 3  |-  ( ( K  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ  /\  K  < 
N )  ->  ( K  e.  ( 0..^ N )  /\  K  =/=  0 ) )
331, 32sylbi 120 . 2  |-  ( K  e.  ( 1..^ N )  ->  ( K  e.  ( 0..^ N )  /\  K  =/=  0
) )
34 elnnne0 9015 . . . . . 6  |-  ( K  e.  NN  <->  ( K  e.  NN0  /\  K  =/=  0 ) )
35 nnge1 8767 . . . . . 6  |-  ( K  e.  NN  ->  1  <_  K )
3634, 35sylbir 134 . . . . 5  |-  ( ( K  e.  NN0  /\  K  =/=  0 )  -> 
1  <_  K )
37363ad2antl1 1144 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  -> 
1  <_  K )
38 simpl3 987 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  ->  K  <  N )
39 nn0z 9098 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  ZZ )
4039adantr 274 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  K  e.  ZZ )
41 1zzd 9105 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  1  e.  ZZ )
42 nnz 9097 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
4342adantl 275 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  N  e.  ZZ )
4440, 41, 433jca 1162 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )
)
45443adant3 1002 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( K  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ ) )
4645adantr 274 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  -> 
( K  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )
)
47 elfzo 9957 . . . . 5  |-  ( ( K  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1..^ N )  <->  ( 1  <_  K  /\  K  <  N ) ) )
4846, 47syl 14 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  -> 
( K  e.  ( 1..^ N )  <->  ( 1  <_  K  /\  K  <  N ) ) )
4937, 38, 48mpbir2and 929 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  ->  K  e.  ( 1..^ N ) )
5027, 49sylanb 282 . 2  |-  ( ( K  e.  ( 0..^ N )  /\  K  =/=  0 )  ->  K  e.  ( 1..^ N ) )
5133, 50impbii 125 1  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  ( 0..^ N )  /\  K  =/=  0
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 1481    =/= wne 2309   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   RRcr 7643   0cc0 7644   1c1 7645    < clt 7824    <_ cle 7825   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator