ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo1fzo0n0 Unicode version

Theorem fzo1fzo0n0 10183
Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
Assertion
Ref Expression
fzo1fzo0n0  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  ( 0..^ N )  /\  K  =/=  0
) )

Proof of Theorem fzo1fzo0n0
StepHypRef Expression
1 elfzo2 10150 . . 3  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  ( ZZ>= `  1 )  /\  N  e.  ZZ  /\  K  <  N ) )
2 elnnuz 9564 . . . . . . 7  |-  ( K  e.  NN  <->  K  e.  ( ZZ>= `  1 )
)
3 nnnn0 9183 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  K  e.  NN0 )
43adantr 276 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  N  e.  ZZ )  ->  K  e.  NN0 )
54adantr 276 . . . . . . . . 9  |-  ( ( ( K  e.  NN  /\  N  e.  ZZ )  /\  K  <  N
)  ->  K  e.  NN0 )
6 nngt0 8944 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  0  <  K )
7 0red 7958 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  0  e.  RR )
8 nnre 8926 . . . . . . . . . . . . . . . 16  |-  ( K  e.  NN  ->  K  e.  RR )
98adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  K  e.  RR )
10 zre 9257 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  N  e.  RR )
1110adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  N  e.  RR )
12 lttr 8031 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  K  /\  K  <  N )  ->  0  <  N
) )
137, 9, 11, 12syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  ( ( 0  < 
K  /\  K  <  N )  ->  0  <  N ) )
14 elnnz 9263 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
1514simplbi2 385 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  (
0  <  N  ->  N  e.  NN ) )
1615adantr 276 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  ( 0  <  N  ->  N  e.  NN ) )
1713, 16syld 45 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  ( ( 0  < 
K  /\  K  <  N )  ->  N  e.  NN ) )
1817exp4b 367 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( K  e.  NN  ->  ( 0  <  K  -> 
( K  <  N  ->  N  e.  NN ) ) ) )
1918com13 80 . . . . . . . . . . 11  |-  ( 0  <  K  ->  ( K  e.  NN  ->  ( N  e.  ZZ  ->  ( K  <  N  ->  N  e.  NN )
) ) )
206, 19mpcom 36 . . . . . . . . . 10  |-  ( K  e.  NN  ->  ( N  e.  ZZ  ->  ( K  <  N  ->  N  e.  NN )
) )
2120imp31 256 . . . . . . . . 9  |-  ( ( ( K  e.  NN  /\  N  e.  ZZ )  /\  K  <  N
)  ->  N  e.  NN )
22 simpr 110 . . . . . . . . 9  |-  ( ( ( K  e.  NN  /\  N  e.  ZZ )  /\  K  <  N
)  ->  K  <  N )
235, 21, 223jca 1177 . . . . . . . 8  |-  ( ( ( K  e.  NN  /\  N  e.  ZZ )  /\  K  <  N
)  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) )
2423exp31 364 . . . . . . 7  |-  ( K  e.  NN  ->  ( N  e.  ZZ  ->  ( K  <  N  -> 
( K  e.  NN0  /\  N  e.  NN  /\  K  <  N ) ) ) )
252, 24sylbir 135 . . . . . 6  |-  ( K  e.  ( ZZ>= `  1
)  ->  ( N  e.  ZZ  ->  ( K  <  N  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) ) ) )
26253imp 1193 . . . . 5  |-  ( ( K  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ  /\  K  < 
N )  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) )
27 elfzo0 10182 . . . . 5  |-  ( K  e.  ( 0..^ N )  <->  ( K  e. 
NN0  /\  N  e.  NN  /\  K  <  N
) )
2826, 27sylibr 134 . . . 4  |-  ( ( K  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ  /\  K  < 
N )  ->  K  e.  ( 0..^ N ) )
29 nnne0 8947 . . . . . 6  |-  ( K  e.  NN  ->  K  =/=  0 )
302, 29sylbir 135 . . . . 5  |-  ( K  e.  ( ZZ>= `  1
)  ->  K  =/=  0 )
31303ad2ant1 1018 . . . 4  |-  ( ( K  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ  /\  K  < 
N )  ->  K  =/=  0 )
3228, 31jca 306 . . 3  |-  ( ( K  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ  /\  K  < 
N )  ->  ( K  e.  ( 0..^ N )  /\  K  =/=  0 ) )
331, 32sylbi 121 . 2  |-  ( K  e.  ( 1..^ N )  ->  ( K  e.  ( 0..^ N )  /\  K  =/=  0
) )
34 elnnne0 9190 . . . . . 6  |-  ( K  e.  NN  <->  ( K  e.  NN0  /\  K  =/=  0 ) )
35 nnge1 8942 . . . . . 6  |-  ( K  e.  NN  ->  1  <_  K )
3634, 35sylbir 135 . . . . 5  |-  ( ( K  e.  NN0  /\  K  =/=  0 )  -> 
1  <_  K )
37363ad2antl1 1159 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  -> 
1  <_  K )
38 simpl3 1002 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  ->  K  <  N )
39 nn0z 9273 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  ZZ )
4039adantr 276 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  K  e.  ZZ )
41 1zzd 9280 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  1  e.  ZZ )
42 nnz 9272 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
4342adantl 277 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  N  e.  ZZ )
4440, 41, 433jca 1177 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )
)
45443adant3 1017 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( K  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ ) )
4645adantr 276 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  -> 
( K  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )
)
47 elfzo 10149 . . . . 5  |-  ( ( K  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1..^ N )  <->  ( 1  <_  K  /\  K  <  N ) ) )
4846, 47syl 14 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  -> 
( K  e.  ( 1..^ N )  <->  ( 1  <_  K  /\  K  <  N ) ) )
4937, 38, 48mpbir2and 944 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  /\  K  =/=  0 )  ->  K  e.  ( 1..^ N ) )
5027, 49sylanb 284 . 2  |-  ( ( K  e.  ( 0..^ N )  /\  K  =/=  0 )  ->  K  e.  ( 1..^ N ) )
5133, 50impbii 126 1  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  ( 0..^ N )  /\  K  =/=  0
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148    =/= wne 2347   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   RRcr 7810   0cc0 7811   1c1 7812    < clt 7992    <_ cle 7993   NNcn 8919   NN0cn0 9176   ZZcz 9253   ZZ>=cuz 9528  ..^cfzo 10142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-fz 10009  df-fzo 10143
This theorem is referenced by:  modprmn0modprm0  12256
  Copyright terms: Public domain W3C validator