| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo1fzo0n0 | Unicode version | ||
| Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| fzo1fzo0n0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo2 10342 |
. . 3
| |
| 2 | elnnuz 9755 |
. . . . . . 7
| |
| 3 | nnnn0 9372 |
. . . . . . . . . . 11
| |
| 4 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 5 | 4 | adantr 276 |
. . . . . . . . 9
|
| 6 | nngt0 9131 |
. . . . . . . . . . 11
| |
| 7 | 0red 8143 |
. . . . . . . . . . . . . . 15
| |
| 8 | nnre 9113 |
. . . . . . . . . . . . . . . 16
| |
| 9 | 8 | adantl 277 |
. . . . . . . . . . . . . . 15
|
| 10 | zre 9446 |
. . . . . . . . . . . . . . . 16
| |
| 11 | 10 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 12 | lttr 8216 |
. . . . . . . . . . . . . . 15
| |
| 13 | 7, 9, 11, 12 | syl3anc 1271 |
. . . . . . . . . . . . . 14
|
| 14 | elnnz 9452 |
. . . . . . . . . . . . . . . 16
| |
| 15 | 14 | simplbi2 385 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 17 | 13, 16 | syld 45 |
. . . . . . . . . . . . 13
|
| 18 | 17 | exp4b 367 |
. . . . . . . . . . . 12
|
| 19 | 18 | com13 80 |
. . . . . . . . . . 11
|
| 20 | 6, 19 | mpcom 36 |
. . . . . . . . . 10
|
| 21 | 20 | imp31 256 |
. . . . . . . . 9
|
| 22 | simpr 110 |
. . . . . . . . 9
| |
| 23 | 5, 21, 22 | 3jca 1201 |
. . . . . . . 8
|
| 24 | 23 | exp31 364 |
. . . . . . 7
|
| 25 | 2, 24 | sylbir 135 |
. . . . . 6
|
| 26 | 25 | 3imp 1217 |
. . . . 5
|
| 27 | elfzo0 10378 |
. . . . 5
| |
| 28 | 26, 27 | sylibr 134 |
. . . 4
|
| 29 | nnne0 9134 |
. . . . . 6
| |
| 30 | 2, 29 | sylbir 135 |
. . . . 5
|
| 31 | 30 | 3ad2ant1 1042 |
. . . 4
|
| 32 | 28, 31 | jca 306 |
. . 3
|
| 33 | 1, 32 | sylbi 121 |
. 2
|
| 34 | elnnne0 9379 |
. . . . . 6
| |
| 35 | nnge1 9129 |
. . . . . 6
| |
| 36 | 34, 35 | sylbir 135 |
. . . . 5
|
| 37 | 36 | 3ad2antl1 1183 |
. . . 4
|
| 38 | simpl3 1026 |
. . . 4
| |
| 39 | nn0z 9462 |
. . . . . . . . 9
| |
| 40 | 39 | adantr 276 |
. . . . . . . 8
|
| 41 | 1zzd 9469 |
. . . . . . . 8
| |
| 42 | nnz 9461 |
. . . . . . . . 9
| |
| 43 | 42 | adantl 277 |
. . . . . . . 8
|
| 44 | 40, 41, 43 | 3jca 1201 |
. . . . . . 7
|
| 45 | 44 | 3adant3 1041 |
. . . . . 6
|
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | elfzo 10341 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | 37, 38, 48 | mpbir2and 950 |
. . 3
|
| 50 | 27, 49 | sylanb 284 |
. 2
|
| 51 | 33, 50 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 |
| This theorem is referenced by: modprmn0modprm0 12774 |
| Copyright terms: Public domain | W3C validator |