| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo1fzo0n0 | Unicode version | ||
| Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| fzo1fzo0n0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo2 10271 |
. . 3
| |
| 2 | elnnuz 9684 |
. . . . . . 7
| |
| 3 | nnnn0 9301 |
. . . . . . . . . . 11
| |
| 4 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 5 | 4 | adantr 276 |
. . . . . . . . 9
|
| 6 | nngt0 9060 |
. . . . . . . . . . 11
| |
| 7 | 0red 8072 |
. . . . . . . . . . . . . . 15
| |
| 8 | nnre 9042 |
. . . . . . . . . . . . . . . 16
| |
| 9 | 8 | adantl 277 |
. . . . . . . . . . . . . . 15
|
| 10 | zre 9375 |
. . . . . . . . . . . . . . . 16
| |
| 11 | 10 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 12 | lttr 8145 |
. . . . . . . . . . . . . . 15
| |
| 13 | 7, 9, 11, 12 | syl3anc 1249 |
. . . . . . . . . . . . . 14
|
| 14 | elnnz 9381 |
. . . . . . . . . . . . . . . 16
| |
| 15 | 14 | simplbi2 385 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 17 | 13, 16 | syld 45 |
. . . . . . . . . . . . 13
|
| 18 | 17 | exp4b 367 |
. . . . . . . . . . . 12
|
| 19 | 18 | com13 80 |
. . . . . . . . . . 11
|
| 20 | 6, 19 | mpcom 36 |
. . . . . . . . . 10
|
| 21 | 20 | imp31 256 |
. . . . . . . . 9
|
| 22 | simpr 110 |
. . . . . . . . 9
| |
| 23 | 5, 21, 22 | 3jca 1179 |
. . . . . . . 8
|
| 24 | 23 | exp31 364 |
. . . . . . 7
|
| 25 | 2, 24 | sylbir 135 |
. . . . . 6
|
| 26 | 25 | 3imp 1195 |
. . . . 5
|
| 27 | elfzo0 10304 |
. . . . 5
| |
| 28 | 26, 27 | sylibr 134 |
. . . 4
|
| 29 | nnne0 9063 |
. . . . . 6
| |
| 30 | 2, 29 | sylbir 135 |
. . . . 5
|
| 31 | 30 | 3ad2ant1 1020 |
. . . 4
|
| 32 | 28, 31 | jca 306 |
. . 3
|
| 33 | 1, 32 | sylbi 121 |
. 2
|
| 34 | elnnne0 9308 |
. . . . . 6
| |
| 35 | nnge1 9058 |
. . . . . 6
| |
| 36 | 34, 35 | sylbir 135 |
. . . . 5
|
| 37 | 36 | 3ad2antl1 1161 |
. . . 4
|
| 38 | simpl3 1004 |
. . . 4
| |
| 39 | nn0z 9391 |
. . . . . . . . 9
| |
| 40 | 39 | adantr 276 |
. . . . . . . 8
|
| 41 | 1zzd 9398 |
. . . . . . . 8
| |
| 42 | nnz 9390 |
. . . . . . . . 9
| |
| 43 | 42 | adantl 277 |
. . . . . . . 8
|
| 44 | 40, 41, 43 | 3jca 1179 |
. . . . . . 7
|
| 45 | 44 | 3adant3 1019 |
. . . . . 6
|
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | elfzo 10270 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | 37, 38, 48 | mpbir2and 946 |
. . 3
|
| 50 | 27, 49 | sylanb 284 |
. 2
|
| 51 | 33, 50 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-fzo 10264 |
| This theorem is referenced by: modprmn0modprm0 12521 |
| Copyright terms: Public domain | W3C validator |