ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo0z Unicode version

Theorem elfzo0z 9954
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 9952 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
elfzo0z  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  ZZ  /\  A  <  B
) )

Proof of Theorem elfzo0z
StepHypRef Expression
1 elfzo0 9952 . 2  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  NN  /\  A  <  B
) )
2 nnz 9066 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
323anim2i 1168 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  ( A  e.  NN0  /\  B  e.  ZZ  /\  A  < 
B ) )
4 simp1 981 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  A  e.  NN0 )
5 elnn0z 9060 . . . . . 6  |-  ( A  e.  NN0  <->  ( A  e.  ZZ  /\  0  <_  A ) )
6 0red 7760 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  0  e.  RR )
7 zre 9051 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  A  e.  RR )
87adantr 274 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  RR )
9 zre 9051 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  B  e.  RR )
109adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  RR )
11 lelttr 7845 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <_  A  /\  A  <  B )  ->  0  <  B
) )
126, 8, 10, 11syl3anc 1216 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  0  <  B ) )
13 elnnz 9057 . . . . . . . . . . 11  |-  ( B  e.  NN  <->  ( B  e.  ZZ  /\  0  < 
B ) )
1413simplbi2 382 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  (
0  <  B  ->  B  e.  NN ) )
1514adantl 275 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  <  B  ->  B  e.  NN ) )
1612, 15syld 45 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  B  e.  NN ) )
1716expd 256 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  <_  A  ->  ( A  <  B  ->  B  e.  NN ) ) )
1817impancom 258 . . . . . 6  |-  ( ( A  e.  ZZ  /\  0  <_  A )  -> 
( B  e.  ZZ  ->  ( A  <  B  ->  B  e.  NN ) ) )
195, 18sylbi 120 . . . . 5  |-  ( A  e.  NN0  ->  ( B  e.  ZZ  ->  ( A  <  B  ->  B  e.  NN ) ) )
20193imp 1175 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  NN )
21 simp3 983 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <  B )
224, 20, 213jca 1161 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A  e.  NN0  /\  B  e.  NN  /\  A  < 
B ) )
233, 22impbii 125 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  <->  ( A  e.  NN0  /\  B  e.  ZZ  /\  A  < 
B ) )
241, 23bitri 183 1  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  ZZ  /\  A  <  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   RRcr 7612   0cc0 7613    < clt 7793    <_ cle 7794   NNcn 8713   NN0cn0 8970   ZZcz 9047  ..^cfzo 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator