ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo0z Unicode version

Theorem elfzo0z 10251
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 10249 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
elfzo0z  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  ZZ  /\  A  <  B
) )

Proof of Theorem elfzo0z
StepHypRef Expression
1 elfzo0 10249 . 2  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  NN  /\  A  <  B
) )
2 nnz 9336 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
323anim2i 1188 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  ( A  e.  NN0  /\  B  e.  ZZ  /\  A  < 
B ) )
4 simp1 999 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  A  e.  NN0 )
5 elnn0z 9330 . . . . . 6  |-  ( A  e.  NN0  <->  ( A  e.  ZZ  /\  0  <_  A ) )
6 0red 8020 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  0  e.  RR )
7 zre 9321 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  A  e.  RR )
87adantr 276 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  RR )
9 zre 9321 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  B  e.  RR )
109adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  RR )
11 lelttr 8108 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <_  A  /\  A  <  B )  ->  0  <  B
) )
126, 8, 10, 11syl3anc 1249 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  0  <  B ) )
13 elnnz 9327 . . . . . . . . . . 11  |-  ( B  e.  NN  <->  ( B  e.  ZZ  /\  0  < 
B ) )
1413simplbi2 385 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  (
0  <  B  ->  B  e.  NN ) )
1514adantl 277 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  <  B  ->  B  e.  NN ) )
1612, 15syld 45 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  B  e.  NN ) )
1716expd 258 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  <_  A  ->  ( A  <  B  ->  B  e.  NN ) ) )
1817impancom 260 . . . . . 6  |-  ( ( A  e.  ZZ  /\  0  <_  A )  -> 
( B  e.  ZZ  ->  ( A  <  B  ->  B  e.  NN ) ) )
195, 18sylbi 121 . . . . 5  |-  ( A  e.  NN0  ->  ( B  e.  ZZ  ->  ( A  <  B  ->  B  e.  NN ) ) )
20193imp 1195 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  NN )
21 simp3 1001 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <  B )
224, 20, 213jca 1179 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A  e.  NN0  /\  B  e.  NN  /\  A  < 
B ) )
233, 22impbii 126 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  <->  ( A  e.  NN0  /\  B  e.  ZZ  /\  A  < 
B ) )
241, 23bitri 184 1  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  ZZ  /\  A  <  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872    < clt 8054    <_ cle 8055   NNcn 8982   NN0cn0 9240   ZZcz 9317  ..^cfzo 10208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator