ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo0z Unicode version

Theorem elfzo0z 10216
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 10214 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
elfzo0z  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  ZZ  /\  A  <  B
) )

Proof of Theorem elfzo0z
StepHypRef Expression
1 elfzo0 10214 . 2  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  NN  /\  A  <  B
) )
2 nnz 9303 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
323anim2i 1188 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  ( A  e.  NN0  /\  B  e.  ZZ  /\  A  < 
B ) )
4 simp1 999 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  A  e.  NN0 )
5 elnn0z 9297 . . . . . 6  |-  ( A  e.  NN0  <->  ( A  e.  ZZ  /\  0  <_  A ) )
6 0red 7989 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  0  e.  RR )
7 zre 9288 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  A  e.  RR )
87adantr 276 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  RR )
9 zre 9288 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  B  e.  RR )
109adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  RR )
11 lelttr 8077 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <_  A  /\  A  <  B )  ->  0  <  B
) )
126, 8, 10, 11syl3anc 1249 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  0  <  B ) )
13 elnnz 9294 . . . . . . . . . . 11  |-  ( B  e.  NN  <->  ( B  e.  ZZ  /\  0  < 
B ) )
1413simplbi2 385 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  (
0  <  B  ->  B  e.  NN ) )
1514adantl 277 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  <  B  ->  B  e.  NN ) )
1612, 15syld 45 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  B  e.  NN ) )
1716expd 258 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  <_  A  ->  ( A  <  B  ->  B  e.  NN ) ) )
1817impancom 260 . . . . . 6  |-  ( ( A  e.  ZZ  /\  0  <_  A )  -> 
( B  e.  ZZ  ->  ( A  <  B  ->  B  e.  NN ) ) )
195, 18sylbi 121 . . . . 5  |-  ( A  e.  NN0  ->  ( B  e.  ZZ  ->  ( A  <  B  ->  B  e.  NN ) ) )
20193imp 1195 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  NN )
21 simp3 1001 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <  B )
224, 20, 213jca 1179 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A  e.  NN0  /\  B  e.  NN  /\  A  < 
B ) )
233, 22impbii 126 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  <->  ( A  e.  NN0  /\  B  e.  ZZ  /\  A  < 
B ) )
241, 23bitri 184 1  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  ZZ  /\  A  <  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   RRcr 7841   0cc0 7842    < clt 8023    <_ cle 8024   NNcn 8950   NN0cn0 9207   ZZcz 9284  ..^cfzo 10174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285  df-uz 9560  df-fz 10041  df-fzo 10175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator