ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzofzim Unicode version

Theorem fzofzim 10388
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
fzofzim  |-  ( ( K  =/=  M  /\  K  e.  ( 0 ... M ) )  ->  K  e.  ( 0..^ M ) )

Proof of Theorem fzofzim
StepHypRef Expression
1 elfz2nn0 10308 . . . 4  |-  ( K  e.  ( 0 ... M )  <->  ( K  e.  NN0  /\  M  e. 
NN0  /\  K  <_  M ) )
2 simpl1 1024 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  /\  K  =/=  M )  ->  K  e.  NN0 )
3 necom 2484 . . . . . . . . 9  |-  ( K  =/=  M  <->  M  =/=  K )
4 nn0z 9466 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  K  e.  ZZ )
5 nn0z 9466 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  M  e.  ZZ )
6 zltlen 9525 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  <  M  <->  ( K  <_  M  /\  M  =/=  K ) ) )
74, 5, 6syl2an 289 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  <  M  <->  ( K  <_  M  /\  M  =/=  K ) ) )
87bicomd 141 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  <_  M  /\  M  =/=  K
)  <->  K  <  M ) )
9 elnn0z 9459 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  <->  ( K  e.  ZZ  /\  0  <_  K ) )
10 0red 8147 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
0  e.  RR )
11 zre 9450 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ZZ  ->  K  e.  RR )
1211adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  ->  K  e.  RR )
13 nn0re 9378 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN0  ->  M  e.  RR )
1413adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  ->  M  e.  RR )
15 lelttr 8235 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  K  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  K  /\  K  <  M )  ->  0  <  M
) )
1610, 12, 14, 15syl3anc 1271 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( 0  <_  K  /\  K  <  M
)  ->  0  <  M ) )
17 elnnz 9456 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
1817simplbi2 385 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ZZ  ->  (
0  <  M  ->  M  e.  NN ) )
195, 18syl 14 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  ( 0  <  M  ->  M  e.  NN ) )
2019adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
( 0  <  M  ->  M  e.  NN ) )
2116, 20syld 45 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( 0  <_  K  /\  K  <  M
)  ->  M  e.  NN ) )
2221expd 258 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
( 0  <_  K  ->  ( K  <  M  ->  M  e.  NN ) ) )
2322impancom 260 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  0  <_  K )  -> 
( M  e.  NN0  ->  ( K  <  M  ->  M  e.  NN ) ) )
249, 23sylbi 121 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  ( M  e.  NN0  ->  ( K  <  M  ->  M  e.  NN ) ) )
2524imp 124 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  <  M  ->  M  e.  NN ) )
268, 25sylbid 150 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  <_  M  /\  M  =/=  K
)  ->  M  e.  NN ) )
2726expd 258 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  <_  M  ->  ( M  =/=  K  ->  M  e.  NN ) ) )
283, 27syl7bi 165 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  <_  M  ->  ( K  =/=  M  ->  M  e.  NN ) ) )
29283impia 1224 . . . . . . 7  |-  ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  ->  ( K  =/=  M  ->  M  e.  NN ) )
3029imp 124 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  /\  K  =/=  M )  ->  M  e.  NN )
318biimpd 144 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  <_  M  /\  M  =/=  K
)  ->  K  <  M ) )
3231exp4b 367 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( M  e.  NN0  ->  ( K  <_  M  ->  ( M  =/=  K  ->  K  <  M ) ) ) )
33323imp 1217 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  ->  ( M  =/=  K  ->  K  <  M ) )
343, 33biimtrid 152 . . . . . . 7  |-  ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  ->  ( K  =/=  M  ->  K  <  M ) )
3534imp 124 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  /\  K  =/=  M )  ->  K  <  M )
362, 30, 353jca 1201 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  /\  K  =/=  M )  -> 
( K  e.  NN0  /\  M  e.  NN  /\  K  <  M ) )
3736ex 115 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  ->  ( K  =/=  M  ->  ( K  e.  NN0  /\  M  e.  NN  /\  K  < 
M ) ) )
381, 37sylbi 121 . . 3  |-  ( K  e.  ( 0 ... M )  ->  ( K  =/=  M  ->  ( K  e.  NN0  /\  M  e.  NN  /\  K  < 
M ) ) )
3938impcom 125 . 2  |-  ( ( K  =/=  M  /\  K  e.  ( 0 ... M ) )  ->  ( K  e. 
NN0  /\  M  e.  NN  /\  K  <  M
) )
40 elfzo0 10382 . 2  |-  ( K  e.  ( 0..^ M )  <->  ( K  e. 
NN0  /\  M  e.  NN  /\  K  <  M
) )
4139, 40sylibr 134 1  |-  ( ( K  =/=  M  /\  K  e.  ( 0 ... M ) )  ->  K  e.  ( 0..^ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200    =/= wne 2400   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999    < clt 8181    <_ cle 8182   NNcn 9110   NN0cn0 9369   ZZcz 9446   ...cfz 10204  ..^cfzo 10338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator