| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzofzim | Unicode version | ||
| Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| Ref | Expression |
|---|---|
| fzofzim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10234 |
. . . 4
| |
| 2 | simpl1 1003 |
. . . . . 6
| |
| 3 | necom 2460 |
. . . . . . . . 9
| |
| 4 | nn0z 9392 |
. . . . . . . . . . . . 13
| |
| 5 | nn0z 9392 |
. . . . . . . . . . . . 13
| |
| 6 | zltlen 9451 |
. . . . . . . . . . . . 13
| |
| 7 | 4, 5, 6 | syl2an 289 |
. . . . . . . . . . . 12
|
| 8 | 7 | bicomd 141 |
. . . . . . . . . . 11
|
| 9 | elnn0z 9385 |
. . . . . . . . . . . . 13
| |
| 10 | 0red 8073 |
. . . . . . . . . . . . . . . . 17
| |
| 11 | zre 9376 |
. . . . . . . . . . . . . . . . . 18
| |
| 12 | 11 | adantr 276 |
. . . . . . . . . . . . . . . . 17
|
| 13 | nn0re 9304 |
. . . . . . . . . . . . . . . . . 18
| |
| 14 | 13 | adantl 277 |
. . . . . . . . . . . . . . . . 17
|
| 15 | lelttr 8161 |
. . . . . . . . . . . . . . . . 17
| |
| 16 | 10, 12, 14, 15 | syl3anc 1250 |
. . . . . . . . . . . . . . . 16
|
| 17 | elnnz 9382 |
. . . . . . . . . . . . . . . . . . 19
| |
| 18 | 17 | simplbi2 385 |
. . . . . . . . . . . . . . . . . 18
|
| 19 | 5, 18 | syl 14 |
. . . . . . . . . . . . . . . . 17
|
| 20 | 19 | adantl 277 |
. . . . . . . . . . . . . . . 16
|
| 21 | 16, 20 | syld 45 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | expd 258 |
. . . . . . . . . . . . . 14
|
| 23 | 22 | impancom 260 |
. . . . . . . . . . . . 13
|
| 24 | 9, 23 | sylbi 121 |
. . . . . . . . . . . 12
|
| 25 | 24 | imp 124 |
. . . . . . . . . . 11
|
| 26 | 8, 25 | sylbid 150 |
. . . . . . . . . 10
|
| 27 | 26 | expd 258 |
. . . . . . . . 9
|
| 28 | 3, 27 | syl7bi 165 |
. . . . . . . 8
|
| 29 | 28 | 3impia 1203 |
. . . . . . 7
|
| 30 | 29 | imp 124 |
. . . . . 6
|
| 31 | 8 | biimpd 144 |
. . . . . . . . . 10
|
| 32 | 31 | exp4b 367 |
. . . . . . . . 9
|
| 33 | 32 | 3imp 1196 |
. . . . . . . 8
|
| 34 | 3, 33 | biimtrid 152 |
. . . . . . 7
|
| 35 | 34 | imp 124 |
. . . . . 6
|
| 36 | 2, 30, 35 | 3jca 1180 |
. . . . 5
|
| 37 | 36 | ex 115 |
. . . 4
|
| 38 | 1, 37 | sylbi 121 |
. . 3
|
| 39 | 38 | impcom 125 |
. 2
|
| 40 | elfzo0 10306 |
. 2
| |
| 41 | 39, 40 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-fzo 10265 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |