| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fzofzim | Unicode version | ||
| Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.) | 
| Ref | Expression | 
|---|---|
| fzofzim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfz2nn0 10187 | 
. . . 4
 | |
| 2 | simpl1 1002 | 
. . . . . 6
 | |
| 3 | necom 2451 | 
. . . . . . . . 9
 | |
| 4 | nn0z 9346 | 
. . . . . . . . . . . . 13
 | |
| 5 | nn0z 9346 | 
. . . . . . . . . . . . 13
 | |
| 6 | zltlen 9404 | 
. . . . . . . . . . . . 13
 | |
| 7 | 4, 5, 6 | syl2an 289 | 
. . . . . . . . . . . 12
 | 
| 8 | 7 | bicomd 141 | 
. . . . . . . . . . 11
 | 
| 9 | elnn0z 9339 | 
. . . . . . . . . . . . 13
 | |
| 10 | 0red 8027 | 
. . . . . . . . . . . . . . . . 17
 | |
| 11 | zre 9330 | 
. . . . . . . . . . . . . . . . . 18
 | |
| 12 | 11 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
 | 
| 13 | nn0re 9258 | 
. . . . . . . . . . . . . . . . . 18
 | |
| 14 | 13 | adantl 277 | 
. . . . . . . . . . . . . . . . 17
 | 
| 15 | lelttr 8115 | 
. . . . . . . . . . . . . . . . 17
 | |
| 16 | 10, 12, 14, 15 | syl3anc 1249 | 
. . . . . . . . . . . . . . . 16
 | 
| 17 | elnnz 9336 | 
. . . . . . . . . . . . . . . . . . 19
 | |
| 18 | 17 | simplbi2 385 | 
. . . . . . . . . . . . . . . . . 18
 | 
| 19 | 5, 18 | syl 14 | 
. . . . . . . . . . . . . . . . 17
 | 
| 20 | 19 | adantl 277 | 
. . . . . . . . . . . . . . . 16
 | 
| 21 | 16, 20 | syld 45 | 
. . . . . . . . . . . . . . 15
 | 
| 22 | 21 | expd 258 | 
. . . . . . . . . . . . . 14
 | 
| 23 | 22 | impancom 260 | 
. . . . . . . . . . . . 13
 | 
| 24 | 9, 23 | sylbi 121 | 
. . . . . . . . . . . 12
 | 
| 25 | 24 | imp 124 | 
. . . . . . . . . . 11
 | 
| 26 | 8, 25 | sylbid 150 | 
. . . . . . . . . 10
 | 
| 27 | 26 | expd 258 | 
. . . . . . . . 9
 | 
| 28 | 3, 27 | syl7bi 165 | 
. . . . . . . 8
 | 
| 29 | 28 | 3impia 1202 | 
. . . . . . 7
 | 
| 30 | 29 | imp 124 | 
. . . . . 6
 | 
| 31 | 8 | biimpd 144 | 
. . . . . . . . . 10
 | 
| 32 | 31 | exp4b 367 | 
. . . . . . . . 9
 | 
| 33 | 32 | 3imp 1195 | 
. . . . . . . 8
 | 
| 34 | 3, 33 | biimtrid 152 | 
. . . . . . 7
 | 
| 35 | 34 | imp 124 | 
. . . . . 6
 | 
| 36 | 2, 30, 35 | 3jca 1179 | 
. . . . 5
 | 
| 37 | 36 | ex 115 | 
. . . 4
 | 
| 38 | 1, 37 | sylbi 121 | 
. . 3
 | 
| 39 | 38 | impcom 125 | 
. 2
 | 
| 40 | elfzo0 10258 | 
. 2
 | |
| 41 | 39, 40 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |