ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txdis1cn Unicode version

Theorem txdis1cn 14446
Description: A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
txdis1cn.x  |-  ( ph  ->  X  e.  V )
txdis1cn.j  |-  ( ph  ->  J  e.  (TopOn `  Y ) )
txdis1cn.k  |-  ( ph  ->  K  e.  Top )
txdis1cn.f  |-  ( ph  ->  F  Fn  ( X  X.  Y ) )
txdis1cn.1  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )
Assertion
Ref Expression
txdis1cn  |-  ( ph  ->  F  e.  ( ( ~P X  tX  J
)  Cn  K ) )
Distinct variable groups:    x, y, F   
x, J    x, X, y    x, K, y    ph, x    x, Y, y
Allowed substitution hints:    ph( y)    J( y)    V( x, y)

Proof of Theorem txdis1cn
Dummy variables  a  b  m  n  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txdis1cn.f . . 3  |-  ( ph  ->  F  Fn  ( X  X.  Y ) )
2 txdis1cn.j . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  Y ) )
32adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  J  e.  (TopOn `  Y )
)
4 txdis1cn.k . . . . . . . 8  |-  ( ph  ->  K  e.  Top )
5 toptopon2 14187 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
64, 5sylib 122 . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
76adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  K  e.  (TopOn `  U. K ) )
8 txdis1cn.1 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )
9 cnf2 14373 . . . . . 6  |-  ( ( J  e.  (TopOn `  Y )  /\  K  e.  (TopOn `  U. K )  /\  ( y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K
) )  ->  (
y  e.  Y  |->  ( x F y ) ) : Y --> U. K
)
103, 7, 8, 9syl3anc 1249 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( x F y ) ) : Y --> U. K
)
11 eqid 2193 . . . . . 6  |-  ( y  e.  Y  |->  ( x F y ) )  =  ( y  e.  Y  |->  ( x F y ) )
1211fmpt 5708 . . . . 5  |-  ( A. y  e.  Y  (
x F y )  e.  U. K  <->  ( y  e.  Y  |->  ( x F y ) ) : Y --> U. K
)
1310, 12sylibr 134 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  ( x F y )  e. 
U. K )
1413ralrimiva 2567 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  ( x F y )  e.  U. K
)
15 ffnov 6022 . . 3  |-  ( F : ( X  X.  Y ) --> U. K  <->  ( F  Fn  ( X  X.  Y )  /\  A. x  e.  X  A. y  e.  Y  (
x F y )  e.  U. K ) )
161, 14, 15sylanbrc 417 . 2  |-  ( ph  ->  F : ( X  X.  Y ) --> U. K )
17 cnvimass 5028 . . . . . . . 8  |-  ( `' F " u ) 
C_  dom  F
181adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  K )  ->  F  Fn  ( X  X.  Y
) )
19 fndm 5353 . . . . . . . . 9  |-  ( F  Fn  ( X  X.  Y )  ->  dom  F  =  ( X  X.  Y ) )
2018, 19syl 14 . . . . . . . 8  |-  ( (
ph  /\  u  e.  K )  ->  dom  F  =  ( X  X.  Y ) )
2117, 20sseqtrid 3229 . . . . . . 7  |-  ( (
ph  /\  u  e.  K )  ->  ( `' F " u ) 
C_  ( X  X.  Y ) )
22 relxp 4768 . . . . . . 7  |-  Rel  ( X  X.  Y )
23 relss 4746 . . . . . . 7  |-  ( ( `' F " u ) 
C_  ( X  X.  Y )  ->  ( Rel  ( X  X.  Y
)  ->  Rel  ( `' F " u ) ) )
2421, 22, 23mpisyl 1457 . . . . . 6  |-  ( (
ph  /\  u  e.  K )  ->  Rel  ( `' F " u ) )
25 elpreima 5677 . . . . . . . 8  |-  ( F  Fn  ( X  X.  Y )  ->  ( <. x ,  z >.  e.  ( `' F "
u )  <->  ( <. x ,  z >.  e.  ( X  X.  Y )  /\  ( F `  <. x ,  z >.
)  e.  u ) ) )
2618, 25syl 14 . . . . . . 7  |-  ( (
ph  /\  u  e.  K )  ->  ( <. x ,  z >.  e.  ( `' F "
u )  <->  ( <. x ,  z >.  e.  ( X  X.  Y )  /\  ( F `  <. x ,  z >.
)  e.  u ) ) )
27 opelxp 4689 . . . . . . . . 9  |-  ( <.
x ,  z >.  e.  ( X  X.  Y
)  <->  ( x  e.  X  /\  z  e.  Y ) )
28 df-ov 5921 . . . . . . . . . . 11  |-  ( x F z )  =  ( F `  <. x ,  z >. )
2928eqcomi 2197 . . . . . . . . . 10  |-  ( F `
 <. x ,  z
>. )  =  (
x F z )
3029eleq1i 2259 . . . . . . . . 9  |-  ( ( F `  <. x ,  z >. )  e.  u  <->  ( x F z )  e.  u
)
3127, 30anbi12i 460 . . . . . . . 8  |-  ( (
<. x ,  z >.  e.  ( X  X.  Y
)  /\  ( F `  <. x ,  z
>. )  e.  u
)  <->  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )
32 simprll 537 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  x  e.  X )
33 snelpwi 4241 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  { x }  e.  ~P X
)
3432, 33syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  { x }  e.  ~P X )
3511mptpreima 5159 . . . . . . . . . . . 12  |-  ( `' ( y  e.  Y  |->  ( x F y ) ) " u
)  =  { y  e.  Y  |  ( x F y )  e.  u }
368adantrr 479 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  X  /\  z  e.  Y ) )  -> 
( y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )
3736ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )
38 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  u  e.  K )
39 cnima 14388 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K )  /\  u  e.  K
)  ->  ( `' ( y  e.  Y  |->  ( x F y ) ) " u
)  e.  J )
4037, 38, 39syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( `' ( y  e.  Y  |->  ( x F y ) )
" u )  e.  J )
4135, 40eqeltrrid 2281 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  { y  e.  Y  |  ( x F y )  e.  u }  e.  J )
42 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
z  e.  Y )
43 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( x F z )  e.  u )
44 vsnid 3650 . . . . . . . . . . . . . 14  |-  x  e. 
{ x }
45 opelxp 4689 . . . . . . . . . . . . . 14  |-  ( <.
x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  <->  ( x  e.  { x }  /\  z  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )
4644, 45mpbiran 942 . . . . . . . . . . . . 13  |-  ( <.
x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  <->  z  e.  { y  e.  Y  | 
( x F y )  e.  u }
)
47 oveq2 5926 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  (
x F y )  =  ( x F z ) )
4847eleq1d 2262 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
( x F y )  e.  u  <->  ( x F z )  e.  u ) )
4948elrab 2916 . . . . . . . . . . . . 13  |-  ( z  e.  { y  e.  Y  |  ( x F y )  e.  u }  <->  ( z  e.  Y  /\  (
x F z )  e.  u ) )
5046, 49bitri 184 . . . . . . . . . . . 12  |-  ( <.
x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  <->  ( z  e.  Y  /\  (
x F z )  e.  u ) )
5142, 43, 50sylanbrc 417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  <. x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } ) )
52 relxp 4768 . . . . . . . . . . . . 13  |-  Rel  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )
5352a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  Rel  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } ) )
54 opelxp 4689 . . . . . . . . . . . . 13  |-  ( <.
n ,  m >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  <->  ( n  e.  { x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )
5532snssd 3763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  { x }  C_  X )
5655sselda 3179 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  n  e.  {
x } )  ->  n  e.  X )
5756adantrr 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  n  e.  X )
58 elrabi 2913 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  { y  e.  Y  |  ( x F y )  e.  u }  ->  m  e.  Y )
5958ad2antll 491 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  m  e.  Y )
6057, 59opelxpd 4692 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  <. n ,  m >.  e.  ( X  X.  Y ) )
61 df-ov 5921 . . . . . . . . . . . . . . . . 17  |-  ( n F m )  =  ( F `  <. n ,  m >. )
62 elsni 3636 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  { x }  ->  n  =  x )
6362ad2antrl 490 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  n  =  x )
6463oveq1d 5933 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( n F m )  =  ( x F m ) )
6561, 64eqtr3id 2240 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( F `  <. n ,  m >. )  =  ( x F m ) )
66 oveq2 5926 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  m  ->  (
x F y )  =  ( x F m ) )
6766eleq1d 2262 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  m  ->  (
( x F y )  e.  u  <->  ( x F m )  e.  u ) )
6867elrab 2916 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  { y  e.  Y  |  ( x F y )  e.  u }  <->  ( m  e.  Y  /\  (
x F m )  e.  u ) )
6968simprbi 275 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  { y  e.  Y  |  ( x F y )  e.  u }  ->  (
x F m )  e.  u )
7069ad2antll 491 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( x F m )  e.  u )
7165, 70eqeltrd 2270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( F `  <. n ,  m >. )  e.  u )
72 elpreima 5677 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  ( X  X.  Y )  ->  ( <. n ,  m >.  e.  ( `' F "
u )  <->  ( <. n ,  m >.  e.  ( X  X.  Y )  /\  ( F `  <. n ,  m >. )  e.  u ) ) )
731, 72syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( <. n ,  m >.  e.  ( `' F " u )  <->  ( <. n ,  m >.  e.  ( X  X.  Y )  /\  ( F `  <. n ,  m >. )  e.  u ) ) )
7473ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( <. n ,  m >.  e.  ( `' F " u )  <-> 
( <. n ,  m >.  e.  ( X  X.  Y )  /\  ( F `  <. n ,  m >. )  e.  u
) ) )
7560, 71, 74mpbir2and 946 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  <. n ,  m >.  e.  ( `' F " u ) )
7675ex 115 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } )  ->  <. n ,  m >.  e.  ( `' F " u ) ) )
7754, 76biimtrid 152 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( <. n ,  m >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  ->  <. n ,  m >.  e.  ( `' F "
u ) ) )
7853, 77relssdv 4751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  C_  ( `' F " u ) )
79 xpeq1 4673 . . . . . . . . . . . . . 14  |-  ( a  =  { x }  ->  ( a  X.  b
)  =  ( { x }  X.  b
) )
8079eleq2d 2263 . . . . . . . . . . . . 13  |-  ( a  =  { x }  ->  ( <. x ,  z
>.  e.  ( a  X.  b )  <->  <. x ,  z >.  e.  ( { x }  X.  b ) ) )
8179sseq1d 3208 . . . . . . . . . . . . 13  |-  ( a  =  { x }  ->  ( ( a  X.  b )  C_  ( `' F " u )  <-> 
( { x }  X.  b )  C_  ( `' F " u ) ) )
8280, 81anbi12d 473 . . . . . . . . . . . 12  |-  ( a  =  { x }  ->  ( ( <. x ,  z >.  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) )  <->  ( <. x ,  z >.  e.  ( { x }  X.  b )  /\  ( { x }  X.  b )  C_  ( `' F " u ) ) ) )
83 xpeq2 4674 . . . . . . . . . . . . . 14  |-  ( b  =  { y  e.  Y  |  ( x F y )  e.  u }  ->  ( { x }  X.  b )  =  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } ) )
8483eleq2d 2263 . . . . . . . . . . . . 13  |-  ( b  =  { y  e.  Y  |  ( x F y )  e.  u }  ->  ( <. x ,  z >.  e.  ( { x }  X.  b )  <->  <. x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } ) ) )
8583sseq1d 3208 . . . . . . . . . . . . 13  |-  ( b  =  { y  e.  Y  |  ( x F y )  e.  u }  ->  (
( { x }  X.  b )  C_  ( `' F " u )  <-> 
( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  C_  ( `' F " u ) ) )
8684, 85anbi12d 473 . . . . . . . . . . . 12  |-  ( b  =  { y  e.  Y  |  ( x F y )  e.  u }  ->  (
( <. x ,  z
>.  e.  ( { x }  X.  b )  /\  ( { x }  X.  b )  C_  ( `' F " u ) )  <->  ( <. x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  /\  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  C_  ( `' F " u ) ) ) )
8782, 86rspc2ev 2879 . . . . . . . . . . 11  |-  ( ( { x }  e.  ~P X  /\  { y  e.  Y  |  ( x F y )  e.  u }  e.  J  /\  ( <. x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  /\  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  C_  ( `' F " u ) ) )  ->  E. a  e.  ~P  X E. b  e.  J  ( <. x ,  z >.  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) )
8834, 41, 51, 78, 87syl112anc 1253 . . . . . . . . . 10  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  E. a  e.  ~P  X E. b  e.  J  ( <. x ,  z
>.  e.  ( a  X.  b )  /\  (
a  X.  b ) 
C_  ( `' F " u ) ) )
89 vex 2763 . . . . . . . . . . . 12  |-  x  e. 
_V
90 vex 2763 . . . . . . . . . . . 12  |-  z  e. 
_V
9189, 90opex 4258 . . . . . . . . . . 11  |-  <. x ,  z >.  e.  _V
92 eleq1 2256 . . . . . . . . . . . . 13  |-  ( v  =  <. x ,  z
>.  ->  ( v  e.  ( a  X.  b
)  <->  <. x ,  z
>.  e.  ( a  X.  b ) ) )
9392anbi1d 465 . . . . . . . . . . . 12  |-  ( v  =  <. x ,  z
>.  ->  ( ( v  e.  ( a  X.  b )  /\  (
a  X.  b ) 
C_  ( `' F " u ) )  <->  ( <. x ,  z >.  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) ) )
94932rexbidv 2519 . . . . . . . . . . 11  |-  ( v  =  <. x ,  z
>.  ->  ( E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) )  <->  E. a  e.  ~P  X E. b  e.  J  ( <. x ,  z
>.  e.  ( a  X.  b )  /\  (
a  X.  b ) 
C_  ( `' F " u ) ) ) )
9591, 94elab 2904 . . . . . . . . . 10  |-  ( <.
x ,  z >.  e.  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) }  <->  E. a  e.  ~P  X E. b  e.  J  ( <. x ,  z >.  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) )
9688, 95sylibr 134 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  <. x ,  z >.  e.  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) } )
9796ex 115 . . . . . . . 8  |-  ( (
ph  /\  u  e.  K )  ->  (
( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u )  ->  <. x ,  z >.  e.  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) } ) )
9831, 97biimtrid 152 . . . . . . 7  |-  ( (
ph  /\  u  e.  K )  ->  (
( <. x ,  z
>.  e.  ( X  X.  Y )  /\  ( F `  <. x ,  z >. )  e.  u
)  ->  <. x ,  z >.  e.  { v  |  E. a  e. 
~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) } ) )
9926, 98sylbid 150 . . . . . 6  |-  ( (
ph  /\  u  e.  K )  ->  ( <. x ,  z >.  e.  ( `' F "
u )  ->  <. x ,  z >.  e.  {
v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) } ) )
10024, 99relssdv 4751 . . . . 5  |-  ( (
ph  /\  u  e.  K )  ->  ( `' F " u ) 
C_  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) } )
101 ssabral 3250 . . . . 5  |-  ( ( `' F " u ) 
C_  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) }  <->  A. v  e.  ( `' F "
u ) E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) )
102100, 101sylib 122 . . . 4  |-  ( (
ph  /\  u  e.  K )  ->  A. v  e.  ( `' F "
u ) E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) )
103 txdis1cn.x . . . . . . 7  |-  ( ph  ->  X  e.  V )
104 distopon 14255 . . . . . . 7  |-  ( X  e.  V  ->  ~P X  e.  (TopOn `  X
) )
105103, 104syl 14 . . . . . 6  |-  ( ph  ->  ~P X  e.  (TopOn `  X ) )
106105adantr 276 . . . . 5  |-  ( (
ph  /\  u  e.  K )  ->  ~P X  e.  (TopOn `  X
) )
1072adantr 276 . . . . 5  |-  ( (
ph  /\  u  e.  K )  ->  J  e.  (TopOn `  Y )
)
108 eltx 14427 . . . . 5  |-  ( ( ~P X  e.  (TopOn `  X )  /\  J  e.  (TopOn `  Y )
)  ->  ( ( `' F " u )  e.  ( ~P X  tX  J )  <->  A. v  e.  ( `' F "
u ) E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) ) )
109106, 107, 108syl2anc 411 . . . 4  |-  ( (
ph  /\  u  e.  K )  ->  (
( `' F "
u )  e.  ( ~P X  tX  J
)  <->  A. v  e.  ( `' F " u ) E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) ) )
110102, 109mpbird 167 . . 3  |-  ( (
ph  /\  u  e.  K )  ->  ( `' F " u )  e.  ( ~P X  tX  J ) )
111110ralrimiva 2567 . 2  |-  ( ph  ->  A. u  e.  K  ( `' F " u )  e.  ( ~P X  tX  J ) )
112 txtopon 14430 . . . 4  |-  ( ( ~P X  e.  (TopOn `  X )  /\  J  e.  (TopOn `  Y )
)  ->  ( ~P X  tX  J )  e.  (TopOn `  ( X  X.  Y ) ) )
113105, 2, 112syl2anc 411 . . 3  |-  ( ph  ->  ( ~P X  tX  J )  e.  (TopOn `  ( X  X.  Y
) ) )
114 iscn 14365 . . 3  |-  ( ( ( ~P X  tX  J )  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  U. K ) )  ->  ( F  e.  ( ( ~P X  tX  J )  Cn  K
)  <->  ( F :
( X  X.  Y
) --> U. K  /\  A. u  e.  K  ( `' F " u )  e.  ( ~P X  tX  J ) ) ) )
115113, 6, 114syl2anc 411 . 2  |-  ( ph  ->  ( F  e.  ( ( ~P X  tX  J )  Cn  K
)  <->  ( F :
( X  X.  Y
) --> U. K  /\  A. u  e.  K  ( `' F " u )  e.  ( ~P X  tX  J ) ) ) )
11616, 111, 115mpbir2and 946 1  |-  ( ph  ->  F  e.  ( ( ~P X  tX  J
)  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3153   ~Pcpw 3601   {csn 3618   <.cop 3621   U.cuni 3835    |-> cmpt 4090    X. cxp 4657   `'ccnv 4658   dom cdm 4659   "cima 4662   Rel wrel 4664    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918   Topctop 14165  TopOnctopon 14178    Cn ccn 14353    tX ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211  df-cn 14356  df-tx 14421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator