ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txdis1cn Unicode version

Theorem txdis1cn 13072
Description: A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
txdis1cn.x  |-  ( ph  ->  X  e.  V )
txdis1cn.j  |-  ( ph  ->  J  e.  (TopOn `  Y ) )
txdis1cn.k  |-  ( ph  ->  K  e.  Top )
txdis1cn.f  |-  ( ph  ->  F  Fn  ( X  X.  Y ) )
txdis1cn.1  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )
Assertion
Ref Expression
txdis1cn  |-  ( ph  ->  F  e.  ( ( ~P X  tX  J
)  Cn  K ) )
Distinct variable groups:    x, y, F   
x, J    x, X, y    x, K, y    ph, x    x, Y, y
Allowed substitution hints:    ph( y)    J( y)    V( x, y)

Proof of Theorem txdis1cn
Dummy variables  a  b  m  n  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txdis1cn.f . . 3  |-  ( ph  ->  F  Fn  ( X  X.  Y ) )
2 txdis1cn.j . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  Y ) )
32adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  J  e.  (TopOn `  Y )
)
4 txdis1cn.k . . . . . . . 8  |-  ( ph  ->  K  e.  Top )
5 toptopon2 12811 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
64, 5sylib 121 . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
76adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  K  e.  (TopOn `  U. K ) )
8 txdis1cn.1 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )
9 cnf2 12999 . . . . . 6  |-  ( ( J  e.  (TopOn `  Y )  /\  K  e.  (TopOn `  U. K )  /\  ( y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K
) )  ->  (
y  e.  Y  |->  ( x F y ) ) : Y --> U. K
)
103, 7, 8, 9syl3anc 1233 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( x F y ) ) : Y --> U. K
)
11 eqid 2170 . . . . . 6  |-  ( y  e.  Y  |->  ( x F y ) )  =  ( y  e.  Y  |->  ( x F y ) )
1211fmpt 5646 . . . . 5  |-  ( A. y  e.  Y  (
x F y )  e.  U. K  <->  ( y  e.  Y  |->  ( x F y ) ) : Y --> U. K
)
1310, 12sylibr 133 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  ( x F y )  e. 
U. K )
1413ralrimiva 2543 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  ( x F y )  e.  U. K
)
15 ffnov 5957 . . 3  |-  ( F : ( X  X.  Y ) --> U. K  <->  ( F  Fn  ( X  X.  Y )  /\  A. x  e.  X  A. y  e.  Y  (
x F y )  e.  U. K ) )
161, 14, 15sylanbrc 415 . 2  |-  ( ph  ->  F : ( X  X.  Y ) --> U. K )
17 cnvimass 4974 . . . . . . . 8  |-  ( `' F " u ) 
C_  dom  F
181adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  K )  ->  F  Fn  ( X  X.  Y
) )
19 fndm 5297 . . . . . . . . 9  |-  ( F  Fn  ( X  X.  Y )  ->  dom  F  =  ( X  X.  Y ) )
2018, 19syl 14 . . . . . . . 8  |-  ( (
ph  /\  u  e.  K )  ->  dom  F  =  ( X  X.  Y ) )
2117, 20sseqtrid 3197 . . . . . . 7  |-  ( (
ph  /\  u  e.  K )  ->  ( `' F " u ) 
C_  ( X  X.  Y ) )
22 relxp 4720 . . . . . . 7  |-  Rel  ( X  X.  Y )
23 relss 4698 . . . . . . 7  |-  ( ( `' F " u ) 
C_  ( X  X.  Y )  ->  ( Rel  ( X  X.  Y
)  ->  Rel  ( `' F " u ) ) )
2421, 22, 23mpisyl 1439 . . . . . 6  |-  ( (
ph  /\  u  e.  K )  ->  Rel  ( `' F " u ) )
25 elpreima 5615 . . . . . . . 8  |-  ( F  Fn  ( X  X.  Y )  ->  ( <. x ,  z >.  e.  ( `' F "
u )  <->  ( <. x ,  z >.  e.  ( X  X.  Y )  /\  ( F `  <. x ,  z >.
)  e.  u ) ) )
2618, 25syl 14 . . . . . . 7  |-  ( (
ph  /\  u  e.  K )  ->  ( <. x ,  z >.  e.  ( `' F "
u )  <->  ( <. x ,  z >.  e.  ( X  X.  Y )  /\  ( F `  <. x ,  z >.
)  e.  u ) ) )
27 opelxp 4641 . . . . . . . . 9  |-  ( <.
x ,  z >.  e.  ( X  X.  Y
)  <->  ( x  e.  X  /\  z  e.  Y ) )
28 df-ov 5856 . . . . . . . . . . 11  |-  ( x F z )  =  ( F `  <. x ,  z >. )
2928eqcomi 2174 . . . . . . . . . 10  |-  ( F `
 <. x ,  z
>. )  =  (
x F z )
3029eleq1i 2236 . . . . . . . . 9  |-  ( ( F `  <. x ,  z >. )  e.  u  <->  ( x F z )  e.  u
)
3127, 30anbi12i 457 . . . . . . . 8  |-  ( (
<. x ,  z >.  e.  ( X  X.  Y
)  /\  ( F `  <. x ,  z
>. )  e.  u
)  <->  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )
32 simprll 532 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  x  e.  X )
33 snelpwi 4197 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  { x }  e.  ~P X
)
3432, 33syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  { x }  e.  ~P X )
3511mptpreima 5104 . . . . . . . . . . . 12  |-  ( `' ( y  e.  Y  |->  ( x F y ) ) " u
)  =  { y  e.  Y  |  ( x F y )  e.  u }
368adantrr 476 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  X  /\  z  e.  Y ) )  -> 
( y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )
3736ad2ant2r 506 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )
38 simplr 525 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  u  e.  K )
39 cnima 13014 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K )  /\  u  e.  K
)  ->  ( `' ( y  e.  Y  |->  ( x F y ) ) " u
)  e.  J )
4037, 38, 39syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( `' ( y  e.  Y  |->  ( x F y ) )
" u )  e.  J )
4135, 40eqeltrrid 2258 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  { y  e.  Y  |  ( x F y )  e.  u }  e.  J )
42 simprlr 533 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
z  e.  Y )
43 simprr 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( x F z )  e.  u )
44 vsnid 3615 . . . . . . . . . . . . . 14  |-  x  e. 
{ x }
45 opelxp 4641 . . . . . . . . . . . . . 14  |-  ( <.
x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  <->  ( x  e.  { x }  /\  z  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )
4644, 45mpbiran 935 . . . . . . . . . . . . 13  |-  ( <.
x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  <->  z  e.  { y  e.  Y  | 
( x F y )  e.  u }
)
47 oveq2 5861 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  (
x F y )  =  ( x F z ) )
4847eleq1d 2239 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
( x F y )  e.  u  <->  ( x F z )  e.  u ) )
4948elrab 2886 . . . . . . . . . . . . 13  |-  ( z  e.  { y  e.  Y  |  ( x F y )  e.  u }  <->  ( z  e.  Y  /\  (
x F z )  e.  u ) )
5046, 49bitri 183 . . . . . . . . . . . 12  |-  ( <.
x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  <->  ( z  e.  Y  /\  (
x F z )  e.  u ) )
5142, 43, 50sylanbrc 415 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  <. x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } ) )
52 relxp 4720 . . . . . . . . . . . . 13  |-  Rel  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )
5352a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  Rel  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } ) )
54 opelxp 4641 . . . . . . . . . . . . 13  |-  ( <.
n ,  m >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  <->  ( n  e.  { x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )
5532snssd 3725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  { x }  C_  X )
5655sselda 3147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  n  e.  {
x } )  ->  n  e.  X )
5756adantrr 476 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  n  e.  X )
58 elrabi 2883 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  { y  e.  Y  |  ( x F y )  e.  u }  ->  m  e.  Y )
5958ad2antll 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  m  e.  Y )
6057, 59opelxpd 4644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  <. n ,  m >.  e.  ( X  X.  Y ) )
61 df-ov 5856 . . . . . . . . . . . . . . . . 17  |-  ( n F m )  =  ( F `  <. n ,  m >. )
62 elsni 3601 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  { x }  ->  n  =  x )
6362ad2antrl 487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  n  =  x )
6463oveq1d 5868 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( n F m )  =  ( x F m ) )
6561, 64eqtr3id 2217 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( F `  <. n ,  m >. )  =  ( x F m ) )
66 oveq2 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  m  ->  (
x F y )  =  ( x F m ) )
6766eleq1d 2239 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  m  ->  (
( x F y )  e.  u  <->  ( x F m )  e.  u ) )
6867elrab 2886 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  { y  e.  Y  |  ( x F y )  e.  u }  <->  ( m  e.  Y  /\  (
x F m )  e.  u ) )
6968simprbi 273 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  { y  e.  Y  |  ( x F y )  e.  u }  ->  (
x F m )  e.  u )
7069ad2antll 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( x F m )  e.  u )
7165, 70eqeltrd 2247 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( F `  <. n ,  m >. )  e.  u )
72 elpreima 5615 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  ( X  X.  Y )  ->  ( <. n ,  m >.  e.  ( `' F "
u )  <->  ( <. n ,  m >.  e.  ( X  X.  Y )  /\  ( F `  <. n ,  m >. )  e.  u ) ) )
731, 72syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( <. n ,  m >.  e.  ( `' F " u )  <->  ( <. n ,  m >.  e.  ( X  X.  Y )  /\  ( F `  <. n ,  m >. )  e.  u ) ) )
7473ad3antrrr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  ( <. n ,  m >.  e.  ( `' F " u )  <-> 
( <. n ,  m >.  e.  ( X  X.  Y )  /\  ( F `  <. n ,  m >. )  e.  u
) ) )
7560, 71, 74mpbir2and 939 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  u  e.  K )  /\  ( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u ) )  /\  ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } ) )  ->  <. n ,  m >.  e.  ( `' F " u ) )
7675ex 114 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( ( n  e. 
{ x }  /\  m  e.  { y  e.  Y  |  (
x F y )  e.  u } )  ->  <. n ,  m >.  e.  ( `' F " u ) ) )
7754, 76syl5bi 151 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( <. n ,  m >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  ->  <. n ,  m >.  e.  ( `' F "
u ) ) )
7853, 77relssdv 4703 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  -> 
( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  C_  ( `' F " u ) )
79 xpeq1 4625 . . . . . . . . . . . . . 14  |-  ( a  =  { x }  ->  ( a  X.  b
)  =  ( { x }  X.  b
) )
8079eleq2d 2240 . . . . . . . . . . . . 13  |-  ( a  =  { x }  ->  ( <. x ,  z
>.  e.  ( a  X.  b )  <->  <. x ,  z >.  e.  ( { x }  X.  b ) ) )
8179sseq1d 3176 . . . . . . . . . . . . 13  |-  ( a  =  { x }  ->  ( ( a  X.  b )  C_  ( `' F " u )  <-> 
( { x }  X.  b )  C_  ( `' F " u ) ) )
8280, 81anbi12d 470 . . . . . . . . . . . 12  |-  ( a  =  { x }  ->  ( ( <. x ,  z >.  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) )  <->  ( <. x ,  z >.  e.  ( { x }  X.  b )  /\  ( { x }  X.  b )  C_  ( `' F " u ) ) ) )
83 xpeq2 4626 . . . . . . . . . . . . . 14  |-  ( b  =  { y  e.  Y  |  ( x F y )  e.  u }  ->  ( { x }  X.  b )  =  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } ) )
8483eleq2d 2240 . . . . . . . . . . . . 13  |-  ( b  =  { y  e.  Y  |  ( x F y )  e.  u }  ->  ( <. x ,  z >.  e.  ( { x }  X.  b )  <->  <. x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } ) ) )
8583sseq1d 3176 . . . . . . . . . . . . 13  |-  ( b  =  { y  e.  Y  |  ( x F y )  e.  u }  ->  (
( { x }  X.  b )  C_  ( `' F " u )  <-> 
( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  C_  ( `' F " u ) ) )
8684, 85anbi12d 470 . . . . . . . . . . . 12  |-  ( b  =  { y  e.  Y  |  ( x F y )  e.  u }  ->  (
( <. x ,  z
>.  e.  ( { x }  X.  b )  /\  ( { x }  X.  b )  C_  ( `' F " u ) )  <->  ( <. x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  /\  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  C_  ( `' F " u ) ) ) )
8782, 86rspc2ev 2849 . . . . . . . . . . 11  |-  ( ( { x }  e.  ~P X  /\  { y  e.  Y  |  ( x F y )  e.  u }  e.  J  /\  ( <. x ,  z >.  e.  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  /\  ( { x }  X.  { y  e.  Y  |  ( x F y )  e.  u } )  C_  ( `' F " u ) ) )  ->  E. a  e.  ~P  X E. b  e.  J  ( <. x ,  z >.  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) )
8834, 41, 51, 78, 87syl112anc 1237 . . . . . . . . . 10  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  E. a  e.  ~P  X E. b  e.  J  ( <. x ,  z
>.  e.  ( a  X.  b )  /\  (
a  X.  b ) 
C_  ( `' F " u ) ) )
89 vex 2733 . . . . . . . . . . . 12  |-  x  e. 
_V
90 vex 2733 . . . . . . . . . . . 12  |-  z  e. 
_V
9189, 90opex 4214 . . . . . . . . . . 11  |-  <. x ,  z >.  e.  _V
92 eleq1 2233 . . . . . . . . . . . . 13  |-  ( v  =  <. x ,  z
>.  ->  ( v  e.  ( a  X.  b
)  <->  <. x ,  z
>.  e.  ( a  X.  b ) ) )
9392anbi1d 462 . . . . . . . . . . . 12  |-  ( v  =  <. x ,  z
>.  ->  ( ( v  e.  ( a  X.  b )  /\  (
a  X.  b ) 
C_  ( `' F " u ) )  <->  ( <. x ,  z >.  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) ) )
94932rexbidv 2495 . . . . . . . . . . 11  |-  ( v  =  <. x ,  z
>.  ->  ( E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) )  <->  E. a  e.  ~P  X E. b  e.  J  ( <. x ,  z
>.  e.  ( a  X.  b )  /\  (
a  X.  b ) 
C_  ( `' F " u ) ) ) )
9591, 94elab 2874 . . . . . . . . . 10  |-  ( <.
x ,  z >.  e.  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) }  <->  E. a  e.  ~P  X E. b  e.  J  ( <. x ,  z >.  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) )
9688, 95sylibr 133 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  K )  /\  (
( x  e.  X  /\  z  e.  Y
)  /\  ( x F z )  e.  u ) )  ->  <. x ,  z >.  e.  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) } )
9796ex 114 . . . . . . . 8  |-  ( (
ph  /\  u  e.  K )  ->  (
( ( x  e.  X  /\  z  e.  Y )  /\  (
x F z )  e.  u )  ->  <. x ,  z >.  e.  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) } ) )
9831, 97syl5bi 151 . . . . . . 7  |-  ( (
ph  /\  u  e.  K )  ->  (
( <. x ,  z
>.  e.  ( X  X.  Y )  /\  ( F `  <. x ,  z >. )  e.  u
)  ->  <. x ,  z >.  e.  { v  |  E. a  e. 
~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) } ) )
9926, 98sylbid 149 . . . . . 6  |-  ( (
ph  /\  u  e.  K )  ->  ( <. x ,  z >.  e.  ( `' F "
u )  ->  <. x ,  z >.  e.  {
v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) } ) )
10024, 99relssdv 4703 . . . . 5  |-  ( (
ph  /\  u  e.  K )  ->  ( `' F " u ) 
C_  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) } )
101 ssabral 3218 . . . . 5  |-  ( ( `' F " u ) 
C_  { v  |  E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) }  <->  A. v  e.  ( `' F "
u ) E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) )
102100, 101sylib 121 . . . 4  |-  ( (
ph  /\  u  e.  K )  ->  A. v  e.  ( `' F "
u ) E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) )
103 txdis1cn.x . . . . . . 7  |-  ( ph  ->  X  e.  V )
104 distopon 12881 . . . . . . 7  |-  ( X  e.  V  ->  ~P X  e.  (TopOn `  X
) )
105103, 104syl 14 . . . . . 6  |-  ( ph  ->  ~P X  e.  (TopOn `  X ) )
106105adantr 274 . . . . 5  |-  ( (
ph  /\  u  e.  K )  ->  ~P X  e.  (TopOn `  X
) )
1072adantr 274 . . . . 5  |-  ( (
ph  /\  u  e.  K )  ->  J  e.  (TopOn `  Y )
)
108 eltx 13053 . . . . 5  |-  ( ( ~P X  e.  (TopOn `  X )  /\  J  e.  (TopOn `  Y )
)  ->  ( ( `' F " u )  e.  ( ~P X  tX  J )  <->  A. v  e.  ( `' F "
u ) E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' F " u ) ) ) )
109106, 107, 108syl2anc 409 . . . 4  |-  ( (
ph  /\  u  e.  K )  ->  (
( `' F "
u )  e.  ( ~P X  tX  J
)  <->  A. v  e.  ( `' F " u ) E. a  e.  ~P  X E. b  e.  J  ( v  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' F " u ) ) ) )
110102, 109mpbird 166 . . 3  |-  ( (
ph  /\  u  e.  K )  ->  ( `' F " u )  e.  ( ~P X  tX  J ) )
111110ralrimiva 2543 . 2  |-  ( ph  ->  A. u  e.  K  ( `' F " u )  e.  ( ~P X  tX  J ) )
112 txtopon 13056 . . . 4  |-  ( ( ~P X  e.  (TopOn `  X )  /\  J  e.  (TopOn `  Y )
)  ->  ( ~P X  tX  J )  e.  (TopOn `  ( X  X.  Y ) ) )
113105, 2, 112syl2anc 409 . . 3  |-  ( ph  ->  ( ~P X  tX  J )  e.  (TopOn `  ( X  X.  Y
) ) )
114 iscn 12991 . . 3  |-  ( ( ( ~P X  tX  J )  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  U. K ) )  ->  ( F  e.  ( ( ~P X  tX  J )  Cn  K
)  <->  ( F :
( X  X.  Y
) --> U. K  /\  A. u  e.  K  ( `' F " u )  e.  ( ~P X  tX  J ) ) ) )
115113, 6, 114syl2anc 409 . 2  |-  ( ph  ->  ( F  e.  ( ( ~P X  tX  J )  Cn  K
)  <->  ( F :
( X  X.  Y
) --> U. K  /\  A. u  e.  K  ( `' F " u )  e.  ( ~P X  tX  J ) ) ) )
11616, 111, 115mpbir2and 939 1  |-  ( ph  ->  F  e.  ( ( ~P X  tX  J
)  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   {crab 2452    C_ wss 3121   ~Pcpw 3566   {csn 3583   <.cop 3586   U.cuni 3796    |-> cmpt 4050    X. cxp 4609   `'ccnv 4610   dom cdm 4611   "cima 4614   Rel wrel 4616    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853   Topctop 12789  TopOnctopon 12802    Cn ccn 12979    tX ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835  df-cn 12982  df-tx 13047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator