| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snelpwi | GIF version | ||
| Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.) |
| Ref | Expression |
|---|---|
| snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 3788 | . 2 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
| 2 | elex 2788 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | snexg 4244 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 4 | elpwg 3634 | . . 3 ⊢ ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ (𝐴 ∈ 𝐵 → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| 6 | 1, 5 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 𝒫 cpw 3626 {csn 3643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 |
| This theorem is referenced by: unipw 4279 infpwfidom 7337 txdis 14864 txdis1cn 14865 |
| Copyright terms: Public domain | W3C validator |