ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpwi GIF version

Theorem snelpwi 4190
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.)
Assertion
Ref Expression
snelpwi (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwi
StepHypRef Expression
1 snssi 3717 . 2 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
2 elex 2737 . . 3 (𝐴𝐵𝐴 ∈ V)
3 snexg 4163 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
4 elpwg 3567 . . 3 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
52, 3, 43syl 17 . 2 (𝐴𝐵 → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
61, 5mpbird 166 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2136  Vcvv 2726  wss 3116  𝒫 cpw 3559  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by:  unipw  4195  infpwfidom  7154  txdis  12917  txdis1cn  12918
  Copyright terms: Public domain W3C validator