Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snelpwi | GIF version |
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.) |
Ref | Expression |
---|---|
snelpwi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 3717 | . 2 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
2 | elex 2737 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | snexg 4163 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
4 | elpwg 3567 | . . 3 ⊢ ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ (𝐴 ∈ 𝐵 → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
6 | 1, 5 | mpbird 166 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 𝒫 cpw 3559 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 |
This theorem is referenced by: unipw 4195 infpwfidom 7154 txdis 12917 txdis1cn 12918 |
Copyright terms: Public domain | W3C validator |