Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snmg | GIF version |
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.) |
Ref | Expression |
---|---|
snmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3612 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | elex2 2746 | . 2 ⊢ (𝐴 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴}) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 ∈ wcel 2141 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sn 3589 |
This theorem is referenced by: snm 3703 prmg 3704 exmidsssnc 4189 xpimasn 5059 1stconst 6200 2ndconst 6201 |
Copyright terms: Public domain | W3C validator |