Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snmg | GIF version |
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.) |
Ref | Expression |
---|---|
snmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3605 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | elex2 2742 | . 2 ⊢ (𝐴 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴}) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 ∈ wcel 2136 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: snm 3696 prmg 3697 exmidsssnc 4182 xpimasn 5052 1stconst 6189 2ndconst 6190 |
Copyright terms: Public domain | W3C validator |