ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snmg GIF version

Theorem snmg 3751
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
snmg (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem snmg
StepHypRef Expression
1 snidg 3662 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 elex2 2788 . 2 (𝐴 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴})
31, 2syl 14 1 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1515  wcel 2176  {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sn 3639
This theorem is referenced by:  snm  3753  prmg  3754  exmidsssnc  4247  xpimasn  5131  1stconst  6307  2ndconst  6308  pwsbas  13124  lsssn0  14132
  Copyright terms: Public domain W3C validator