ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snmg GIF version

Theorem snmg 3736
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
snmg (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem snmg
StepHypRef Expression
1 snidg 3647 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 elex2 2776 . 2 (𝐴 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴})
31, 2syl 14 1 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1503  wcel 2164  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by:  snm  3738  prmg  3739  exmidsssnc  4232  xpimasn  5114  1stconst  6274  2ndconst  6275  lsssn0  13866
  Copyright terms: Public domain W3C validator