![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snmg | GIF version |
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.) |
Ref | Expression |
---|---|
snmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3493 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | elex2 2649 | . 2 ⊢ (𝐴 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴}) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1433 ∈ wcel 1445 {csn 3466 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-sn 3472 |
This theorem is referenced by: snm 3582 prmg 3583 xpimasn 4913 1stconst 6024 2ndconst 6025 |
Copyright terms: Public domain | W3C validator |