ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snmg GIF version

Theorem snmg 3580
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
snmg (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem snmg
StepHypRef Expression
1 snidg 3493 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 elex2 2649 . 2 (𝐴 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴})
31, 2syl 14 1 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1433  wcel 1445  {csn 3466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-sn 3472
This theorem is referenced by:  snm  3582  prmg  3583  xpimasn  4913  1stconst  6024  2ndconst  6025
  Copyright terms: Public domain W3C validator