ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotricim Unicode version

Theorem sotricim 4370
Description: One direction of sotritric 4371 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
sotricim  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )

Proof of Theorem sotricim
StepHypRef Expression
1 sonr 4364 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
21adantrr 479 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  B R B )
323adant3 1020 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  -.  B R B )
4 breq2 4048 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
54biimprcd 160 . . . . . 6  |-  ( B R C  ->  ( B  =  C  ->  B R B ) )
653ad2ant3 1023 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  ( B  =  C  ->  B R B ) )
73, 6mtod 665 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  -.  B  =  C )
873expia 1208 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  B  =  C )
)
9 so2nr 4368 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
10 imnan 692 . . . 4  |-  ( ( B R C  ->  -.  C R B )  <->  -.  ( B R C  /\  C R B ) )
119, 10sylibr 134 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  C R B ) )
128, 11jcad 307 . 2  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  ( -.  B  =  C  /\  -.  C R B ) ) )
13 ioran 754 . 2  |-  ( -.  ( B  =  C  \/  C R B )  <->  ( -.  B  =  C  /\  -.  C R B ) )
1412, 13imbitrrdi 162 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044    Or wor 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-po 4343  df-iso 4344
This theorem is referenced by:  sotritric  4371
  Copyright terms: Public domain W3C validator