ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotricim Unicode version

Theorem sotricim 4301
Description: One direction of sotritric 4302 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
sotricim  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )

Proof of Theorem sotricim
StepHypRef Expression
1 sonr 4295 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
21adantrr 471 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  B R B )
323adant3 1007 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  -.  B R B )
4 breq2 3986 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
54biimprcd 159 . . . . . 6  |-  ( B R C  ->  ( B  =  C  ->  B R B ) )
653ad2ant3 1010 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  ( B  =  C  ->  B R B ) )
73, 6mtod 653 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  -.  B  =  C )
873expia 1195 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  B  =  C )
)
9 so2nr 4299 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
10 imnan 680 . . . 4  |-  ( ( B R C  ->  -.  C R B )  <->  -.  ( B R C  /\  C R B ) )
119, 10sylibr 133 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  C R B ) )
128, 11jcad 305 . 2  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  ( -.  B  =  C  /\  -.  C R B ) ) )
13 ioran 742 . 2  |-  ( -.  ( B  =  C  \/  C R B )  <->  ( -.  B  =  C  /\  -.  C R B ) )
1412, 13syl6ibr 161 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982    Or wor 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-po 4274  df-iso 4275
This theorem is referenced by:  sotritric  4302
  Copyright terms: Public domain W3C validator