ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotricim Unicode version

Theorem sotricim 4325
Description: One direction of sotritric 4326 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
sotricim  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )

Proof of Theorem sotricim
StepHypRef Expression
1 sonr 4319 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
21adantrr 479 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  B R B )
323adant3 1017 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  -.  B R B )
4 breq2 4009 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
54biimprcd 160 . . . . . 6  |-  ( B R C  ->  ( B  =  C  ->  B R B ) )
653ad2ant3 1020 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  ( B  =  C  ->  B R B ) )
73, 6mtod 663 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
)  /\  B R C )  ->  -.  B  =  C )
873expia 1205 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  B  =  C )
)
9 so2nr 4323 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
10 imnan 690 . . . 4  |-  ( ( B R C  ->  -.  C R B )  <->  -.  ( B R C  /\  C R B ) )
119, 10sylibr 134 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  C R B ) )
128, 11jcad 307 . 2  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  ( -.  B  =  C  /\  -.  C R B ) ) )
13 ioran 752 . 2  |-  ( -.  ( B  =  C  \/  C R B )  <->  ( -.  B  =  C  /\  -.  C R B ) )
1412, 13imbitrrdi 162 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005    Or wor 4297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-po 4298  df-iso 4299
This theorem is referenced by:  sotritric  4326
  Copyright terms: Public domain W3C validator