ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1 GIF version

Theorem ss1o0el1 4158
Description: A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))

Proof of Theorem ss1o0el1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex2 2728 . . . 4 (∅ ∈ 𝐴 → ∃𝑥 𝑥𝐴)
2 sssnm 3717 . . . 4 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅}))
31, 2syl 14 . . 3 (∅ ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅}))
43biimpcd 158 . 2 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
5 0ex 4091 . . . 4 ∅ ∈ V
65snid 3591 . . 3 ∅ ∈ {∅}
7 eleq2 2221 . . 3 (𝐴 = {∅} → (∅ ∈ 𝐴 ↔ ∅ ∈ {∅}))
86, 7mpbiri 167 . 2 (𝐴 = {∅} → ∅ ∈ 𝐴)
94, 8impbid1 141 1 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1335  wex 1472  wcel 2128  wss 3102  c0 3394  {csn 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-nul 4090
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104  df-in 3108  df-ss 3115  df-nul 3395  df-sn 3566
This theorem is referenced by:  exmid01  4159  ss1o0el1o  6854
  Copyright terms: Public domain W3C validator