Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ss1o0el1 | GIF version |
Description: A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.) |
Ref | Expression |
---|---|
ss1o0el1 | ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2746 | . . . 4 ⊢ (∅ ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | sssnm 3739 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅})) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (∅ ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅})) |
4 | 3 | biimpcd 158 | . 2 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 → 𝐴 = {∅})) |
5 | 0ex 4114 | . . . 4 ⊢ ∅ ∈ V | |
6 | 5 | snid 3612 | . . 3 ⊢ ∅ ∈ {∅} |
7 | eleq2 2234 | . . 3 ⊢ (𝐴 = {∅} → (∅ ∈ 𝐴 ↔ ∅ ∈ {∅})) | |
8 | 6, 7 | mpbiri 167 | . 2 ⊢ (𝐴 = {∅} → ∅ ∈ 𝐴) |
9 | 4, 8 | impbid1 141 | 1 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ⊆ wss 3121 ∅c0 3414 {csn 3581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-nul 4113 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3587 |
This theorem is referenced by: exmid01 4182 ss1o0el1o 6888 |
Copyright terms: Public domain | W3C validator |