![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss1o0el1 | GIF version |
Description: A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.) |
Ref | Expression |
---|---|
ss1o0el1 | ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2754 | . . . 4 ⊢ (∅ ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | sssnm 3755 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅})) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (∅ ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅})) |
4 | 3 | biimpcd 159 | . 2 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 → 𝐴 = {∅})) |
5 | 0ex 4131 | . . . 4 ⊢ ∅ ∈ V | |
6 | 5 | snid 3624 | . . 3 ⊢ ∅ ∈ {∅} |
7 | eleq2 2241 | . . 3 ⊢ (𝐴 = {∅} → (∅ ∈ 𝐴 ↔ ∅ ∈ {∅})) | |
8 | 6, 7 | mpbiri 168 | . 2 ⊢ (𝐴 = {∅} → ∅ ∈ 𝐴) |
9 | 4, 8 | impbid1 142 | 1 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⊆ wss 3130 ∅c0 3423 {csn 3593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4130 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-dif 3132 df-in 3136 df-ss 3143 df-nul 3424 df-sn 3599 |
This theorem is referenced by: exmid01 4199 ss1o0el1o 6912 |
Copyright terms: Public domain | W3C validator |