| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss1o0el1 | GIF version | ||
| Description: A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| ss1o0el1 | ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex2 2779 | . . . 4 ⊢ (∅ ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | sssnm 3784 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅})) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (∅ ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅})) |
| 4 | 3 | biimpcd 159 | . 2 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 → 𝐴 = {∅})) |
| 5 | 0ex 4160 | . . . 4 ⊢ ∅ ∈ V | |
| 6 | 5 | snid 3653 | . . 3 ⊢ ∅ ∈ {∅} |
| 7 | eleq2 2260 | . . 3 ⊢ (𝐴 = {∅} → (∅ ∈ 𝐴 ↔ ∅ ∈ {∅})) | |
| 8 | 6, 7 | mpbiri 168 | . 2 ⊢ (𝐴 = {∅} → ∅ ∈ 𝐴) |
| 9 | 4, 8 | impbid1 142 | 1 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3450 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 |
| This theorem is referenced by: exmid01 4231 ss1o0el1o 6974 |
| Copyright terms: Public domain | W3C validator |