![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss1o0el1 | GIF version |
Description: A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.) |
Ref | Expression |
---|---|
ss1o0el1 | ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2776 | . . . 4 ⊢ (∅ ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | sssnm 3780 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅})) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (∅ ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅})) |
4 | 3 | biimpcd 159 | . 2 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 → 𝐴 = {∅})) |
5 | 0ex 4156 | . . . 4 ⊢ ∅ ∈ V | |
6 | 5 | snid 3649 | . . 3 ⊢ ∅ ∈ {∅} |
7 | eleq2 2257 | . . 3 ⊢ (𝐴 = {∅} → (∅ ∈ 𝐴 ↔ ∅ ∈ {∅})) | |
8 | 6, 7 | mpbiri 168 | . 2 ⊢ (𝐴 = {∅} → ∅ ∈ 𝐴) |
9 | 4, 8 | impbid1 142 | 1 ⊢ (𝐴 ⊆ {∅} → (∅ ∈ 𝐴 ↔ 𝐴 = {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3153 ∅c0 3446 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 |
This theorem is referenced by: exmid01 4227 ss1o0el1o 6969 |
Copyright terms: Public domain | W3C validator |