ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1 GIF version

Theorem ss1o0el1 4226
Description: A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))

Proof of Theorem ss1o0el1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex2 2776 . . . 4 (∅ ∈ 𝐴 → ∃𝑥 𝑥𝐴)
2 sssnm 3780 . . . 4 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅}))
31, 2syl 14 . . 3 (∅ ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅}))
43biimpcd 159 . 2 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
5 0ex 4156 . . . 4 ∅ ∈ V
65snid 3649 . . 3 ∅ ∈ {∅}
7 eleq2 2257 . . 3 (𝐴 = {∅} → (∅ ∈ 𝐴 ↔ ∅ ∈ {∅}))
86, 7mpbiri 168 . 2 (𝐴 = {∅} → ∅ ∈ 𝐴)
94, 8impbid1 142 1 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  wss 3153  c0 3446  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4155
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624
This theorem is referenced by:  exmid01  4227  ss1o0el1o  6969
  Copyright terms: Public domain W3C validator