ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss1o0el1 GIF version

Theorem ss1o0el1 4281
Description: A subclass of {∅} contains the empty set if and only if it equals {∅}. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.)
Assertion
Ref Expression
ss1o0el1 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))

Proof of Theorem ss1o0el1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex2 2816 . . . 4 (∅ ∈ 𝐴 → ∃𝑥 𝑥𝐴)
2 sssnm 3832 . . . 4 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅}))
31, 2syl 14 . . 3 (∅ ∈ 𝐴 → (𝐴 ⊆ {∅} ↔ 𝐴 = {∅}))
43biimpcd 159 . 2 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
5 0ex 4211 . . . 4 ∅ ∈ V
65snid 3697 . . 3 ∅ ∈ {∅}
7 eleq2 2293 . . 3 (𝐴 = {∅} → (∅ ∈ 𝐴 ↔ ∅ ∈ {∅}))
86, 7mpbiri 168 . 2 (𝐴 = {∅} → ∅ ∈ 𝐴)
94, 8impbid1 142 1 (𝐴 ⊆ {∅} → (∅ ∈ 𝐴𝐴 = {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  wss 3197  c0 3491  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4210
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672
This theorem is referenced by:  exmid01  4282  ss1o0el1o  7075
  Copyright terms: Public domain W3C validator