Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmid01 | Unicode version |
Description: Excluded middle is equivalent to saying any subset of is either or . (Contributed by BJ and Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmid01 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-exmid 4156 | . 2 EXMID DECID | |
2 | df-dc 821 | . . . . 5 DECID | |
3 | orcom 718 | . . . . . 6 | |
4 | simpll 519 | . . . . . . . . . . . . . 14 | |
5 | simpr 109 | . . . . . . . . . . . . . 14 | |
6 | 4, 5 | sseldd 3129 | . . . . . . . . . . . . 13 |
7 | velsn 3577 | . . . . . . . . . . . . 13 | |
8 | 6, 7 | sylib 121 | . . . . . . . . . . . 12 |
9 | 8, 5 | eqeltrrd 2235 | . . . . . . . . . . 11 |
10 | simplr 520 | . . . . . . . . . . 11 | |
11 | 9, 10 | pm2.65da 651 | . . . . . . . . . 10 |
12 | 11 | eq0rdv 3438 | . . . . . . . . 9 |
13 | 12 | ex 114 | . . . . . . . 8 |
14 | noel 3398 | . . . . . . . . 9 | |
15 | eleq2 2221 | . . . . . . . . 9 | |
16 | 14, 15 | mtbiri 665 | . . . . . . . 8 |
17 | 13, 16 | impbid1 141 | . . . . . . 7 |
18 | ss1o0el1 4158 | . . . . . . 7 | |
19 | 17, 18 | orbi12d 783 | . . . . . 6 |
20 | 3, 19 | syl5bb 191 | . . . . 5 |
21 | 2, 20 | syl5bb 191 | . . . 4 DECID |
22 | 21 | pm5.74i 179 | . . 3 DECID |
23 | 22 | albii 1450 | . 2 DECID |
24 | 1, 23 | bitri 183 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 wal 1333 wceq 1335 wcel 2128 wss 3102 c0 3394 csn 3560 EXMIDwem 4155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-nul 4090 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-exmid 4156 |
This theorem is referenced by: exmid1dc 4161 exmidn0m 4162 exmidsssn 4163 exmidpw 6850 exmidpweq 6851 exmidomni 7079 ss1oel2o 13536 exmidsbthrlem 13564 sbthom 13568 |
Copyright terms: Public domain | W3C validator |