ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid01 Unicode version

Theorem exmid01 4199
Description: Excluded middle is equivalent to saying any subset of  { (/) } is either  (/) or  { (/) }. (Contributed by BJ and Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmid01  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )

Proof of Theorem exmid01
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-exmid 4196 . 2  |-  (EXMID  <->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
2 df-dc 835 . . . . 5  |-  (DECID  (/)  e.  x  <->  (
(/)  e.  x  \/  -.  (/)  e.  x ) )
3 orcom 728 . . . . . 6  |-  ( (
(/)  e.  x  \/  -.  (/)  e.  x )  <-> 
( -.  (/)  e.  x  \/  (/)  e.  x ) )
4 simpll 527 . . . . . . . . . . . . . 14  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  x  C_ 
{ (/) } )
5 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  y  e.  x )
64, 5sseldd 3157 . . . . . . . . . . . . 13  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  y  e.  { (/) } )
7 velsn 3610 . . . . . . . . . . . . 13  |-  ( y  e.  { (/) }  <->  y  =  (/) )
86, 7sylib 122 . . . . . . . . . . . 12  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  y  =  (/) )
98, 5eqeltrrd 2255 . . . . . . . . . . 11  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  (/)  e.  x
)
10 simplr 528 . . . . . . . . . . 11  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  -.  (/) 
e.  x )
119, 10pm2.65da 661 . . . . . . . . . 10  |-  ( ( x  C_  { (/) }  /\  -.  (/)  e.  x )  ->  -.  y  e.  x )
1211eq0rdv 3468 . . . . . . . . 9  |-  ( ( x  C_  { (/) }  /\  -.  (/)  e.  x )  ->  x  =  (/) )
1312ex 115 . . . . . . . 8  |-  ( x 
C_  { (/) }  ->  ( -.  (/)  e.  x  ->  x  =  (/) ) )
14 noel 3427 . . . . . . . . 9  |-  -.  (/)  e.  (/)
15 eleq2 2241 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
1614, 15mtbiri 675 . . . . . . . 8  |-  ( x  =  (/)  ->  -.  (/)  e.  x
)
1713, 16impbid1 142 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  ( -.  (/)  e.  x  <->  x  =  (/) ) )
18 ss1o0el1 4198 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  (
(/)  e.  x  <->  x  =  { (/) } ) )
1917, 18orbi12d 793 . . . . . 6  |-  ( x 
C_  { (/) }  ->  ( ( -.  (/)  e.  x  \/  (/)  e.  x )  <-> 
( x  =  (/)  \/  x  =  { (/) } ) ) )
203, 19bitrid 192 . . . . 5  |-  ( x 
C_  { (/) }  ->  ( ( (/)  e.  x  \/  -.  (/)  e.  x )  <-> 
( x  =  (/)  \/  x  =  { (/) } ) ) )
212, 20bitrid 192 . . . 4  |-  ( x 
C_  { (/) }  ->  (DECID  (/)  e.  x  <->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
2221pm5.74i 180 . . 3  |-  ( ( x  C_  { (/) }  -> DECID  (/)  e.  x
)  <->  ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2322albii 1470 . 2  |-  ( A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x )  <->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
241, 23bitri 184 1  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834   A.wal 1351    = wceq 1353    e. wcel 2148    C_ wss 3130   (/)c0 3423   {csn 3593  EXMIDwem 4195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-nul 4130
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-nul 3424  df-sn 3599  df-exmid 4196
This theorem is referenced by:  exmid1dc  4201  exmidn0m  4202  exmidsssn  4203  exmidpw  6908  exmidpweq  6909  exmidomni  7140  ss1oel2o  14746  exmidsbthrlem  14773  sbthom  14777
  Copyright terms: Public domain W3C validator