| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmid01 | Unicode version | ||
| Description: Excluded middle is
equivalent to saying any subset of |
| Ref | Expression |
|---|---|
| exmid01 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-exmid 4278 |
. 2
| |
| 2 | df-dc 840 |
. . . . 5
| |
| 3 | orcom 733 |
. . . . . 6
| |
| 4 | simpll 527 |
. . . . . . . . . . . . . 14
| |
| 5 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 6 | 4, 5 | sseldd 3225 |
. . . . . . . . . . . . 13
|
| 7 | velsn 3683 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | sylib 122 |
. . . . . . . . . . . 12
|
| 9 | 8, 5 | eqeltrrd 2307 |
. . . . . . . . . . 11
|
| 10 | simplr 528 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | pm2.65da 665 |
. . . . . . . . . 10
|
| 12 | 11 | eq0rdv 3536 |
. . . . . . . . 9
|
| 13 | 12 | ex 115 |
. . . . . . . 8
|
| 14 | noel 3495 |
. . . . . . . . 9
| |
| 15 | eleq2 2293 |
. . . . . . . . 9
| |
| 16 | 14, 15 | mtbiri 679 |
. . . . . . . 8
|
| 17 | 13, 16 | impbid1 142 |
. . . . . . 7
|
| 18 | ss1o0el1 4280 |
. . . . . . 7
| |
| 19 | 17, 18 | orbi12d 798 |
. . . . . 6
|
| 20 | 3, 19 | bitrid 192 |
. . . . 5
|
| 21 | 2, 20 | bitrid 192 |
. . . 4
|
| 22 | 21 | pm5.74i 180 |
. . 3
|
| 23 | 22 | albii 1516 |
. 2
|
| 24 | 1, 23 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-exmid 4278 |
| This theorem is referenced by: exmid1dc 4283 exmidn0m 4284 exmidsssn 4285 exmidpw 7066 exmidpweq 7067 exmidomni 7305 ss1oel2o 16313 exmidsbthrlem 16349 sbthom 16353 |
| Copyright terms: Public domain | W3C validator |