Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmid01 | Unicode version |
Description: Excluded middle is equivalent to saying any subset of is either or . (Contributed by BJ and Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmid01 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-exmid 4174 | . 2 EXMID DECID | |
2 | df-dc 825 | . . . . 5 DECID | |
3 | orcom 718 | . . . . . 6 | |
4 | simpll 519 | . . . . . . . . . . . . . 14 | |
5 | simpr 109 | . . . . . . . . . . . . . 14 | |
6 | 4, 5 | sseldd 3143 | . . . . . . . . . . . . 13 |
7 | velsn 3593 | . . . . . . . . . . . . 13 | |
8 | 6, 7 | sylib 121 | . . . . . . . . . . . 12 |
9 | 8, 5 | eqeltrrd 2244 | . . . . . . . . . . 11 |
10 | simplr 520 | . . . . . . . . . . 11 | |
11 | 9, 10 | pm2.65da 651 | . . . . . . . . . 10 |
12 | 11 | eq0rdv 3453 | . . . . . . . . 9 |
13 | 12 | ex 114 | . . . . . . . 8 |
14 | noel 3413 | . . . . . . . . 9 | |
15 | eleq2 2230 | . . . . . . . . 9 | |
16 | 14, 15 | mtbiri 665 | . . . . . . . 8 |
17 | 13, 16 | impbid1 141 | . . . . . . 7 |
18 | ss1o0el1 4176 | . . . . . . 7 | |
19 | 17, 18 | orbi12d 783 | . . . . . 6 |
20 | 3, 19 | syl5bb 191 | . . . . 5 |
21 | 2, 20 | syl5bb 191 | . . . 4 DECID |
22 | 21 | pm5.74i 179 | . . 3 DECID |
23 | 22 | albii 1458 | . 2 DECID |
24 | 1, 23 | bitri 183 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wal 1341 wceq 1343 wcel 2136 wss 3116 c0 3409 csn 3576 EXMIDwem 4173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-exmid 4174 |
This theorem is referenced by: exmid1dc 4179 exmidn0m 4180 exmidsssn 4181 exmidpw 6874 exmidpweq 6875 exmidomni 7106 ss1oel2o 13873 exmidsbthrlem 13901 sbthom 13905 |
Copyright terms: Public domain | W3C validator |