| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmid01 | Unicode version | ||
| Description: Excluded middle is
equivalent to saying any subset of |
| Ref | Expression |
|---|---|
| exmid01 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-exmid 4239 |
. 2
| |
| 2 | df-dc 837 |
. . . . 5
| |
| 3 | orcom 730 |
. . . . . 6
| |
| 4 | simpll 527 |
. . . . . . . . . . . . . 14
| |
| 5 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 6 | 4, 5 | sseldd 3194 |
. . . . . . . . . . . . 13
|
| 7 | velsn 3650 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | sylib 122 |
. . . . . . . . . . . 12
|
| 9 | 8, 5 | eqeltrrd 2283 |
. . . . . . . . . . 11
|
| 10 | simplr 528 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | pm2.65da 663 |
. . . . . . . . . 10
|
| 12 | 11 | eq0rdv 3505 |
. . . . . . . . 9
|
| 13 | 12 | ex 115 |
. . . . . . . 8
|
| 14 | noel 3464 |
. . . . . . . . 9
| |
| 15 | eleq2 2269 |
. . . . . . . . 9
| |
| 16 | 14, 15 | mtbiri 677 |
. . . . . . . 8
|
| 17 | 13, 16 | impbid1 142 |
. . . . . . 7
|
| 18 | ss1o0el1 4241 |
. . . . . . 7
| |
| 19 | 17, 18 | orbi12d 795 |
. . . . . 6
|
| 20 | 3, 19 | bitrid 192 |
. . . . 5
|
| 21 | 2, 20 | bitrid 192 |
. . . 4
|
| 22 | 21 | pm5.74i 180 |
. . 3
|
| 23 | 22 | albii 1493 |
. 2
|
| 24 | 1, 23 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-nul 4170 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-exmid 4239 |
| This theorem is referenced by: exmid1dc 4244 exmidn0m 4245 exmidsssn 4246 exmidpw 7005 exmidpweq 7006 exmidomni 7244 ss1oel2o 15928 exmidsbthrlem 15961 sbthom 15965 |
| Copyright terms: Public domain | W3C validator |