| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmid01 | Unicode version | ||
| Description: Excluded middle is
equivalent to saying any subset of |
| Ref | Expression |
|---|---|
| exmid01 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-exmid 4228 |
. 2
| |
| 2 | df-dc 836 |
. . . . 5
| |
| 3 | orcom 729 |
. . . . . 6
| |
| 4 | simpll 527 |
. . . . . . . . . . . . . 14
| |
| 5 | simpr 110 |
. . . . . . . . . . . . . 14
| |
| 6 | 4, 5 | sseldd 3184 |
. . . . . . . . . . . . 13
|
| 7 | velsn 3639 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | sylib 122 |
. . . . . . . . . . . 12
|
| 9 | 8, 5 | eqeltrrd 2274 |
. . . . . . . . . . 11
|
| 10 | simplr 528 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | pm2.65da 662 |
. . . . . . . . . 10
|
| 12 | 11 | eq0rdv 3495 |
. . . . . . . . 9
|
| 13 | 12 | ex 115 |
. . . . . . . 8
|
| 14 | noel 3454 |
. . . . . . . . 9
| |
| 15 | eleq2 2260 |
. . . . . . . . 9
| |
| 16 | 14, 15 | mtbiri 676 |
. . . . . . . 8
|
| 17 | 13, 16 | impbid1 142 |
. . . . . . 7
|
| 18 | ss1o0el1 4230 |
. . . . . . 7
| |
| 19 | 17, 18 | orbi12d 794 |
. . . . . 6
|
| 20 | 3, 19 | bitrid 192 |
. . . . 5
|
| 21 | 2, 20 | bitrid 192 |
. . . 4
|
| 22 | 21 | pm5.74i 180 |
. . 3
|
| 23 | 22 | albii 1484 |
. 2
|
| 24 | 1, 23 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-exmid 4228 |
| This theorem is referenced by: exmid1dc 4233 exmidn0m 4234 exmidsssn 4235 exmidpw 6969 exmidpweq 6970 exmidomni 7208 ss1oel2o 15638 exmidsbthrlem 15666 sbthom 15670 |
| Copyright terms: Public domain | W3C validator |