ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid01 Unicode version

Theorem exmid01 4177
Description: Excluded middle is equivalent to saying any subset of  { (/) } is either  (/) or  { (/) }. (Contributed by BJ and Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmid01  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )

Proof of Theorem exmid01
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-exmid 4174 . 2  |-  (EXMID  <->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
2 df-dc 825 . . . . 5  |-  (DECID  (/)  e.  x  <->  (
(/)  e.  x  \/  -.  (/)  e.  x ) )
3 orcom 718 . . . . . 6  |-  ( (
(/)  e.  x  \/  -.  (/)  e.  x )  <-> 
( -.  (/)  e.  x  \/  (/)  e.  x ) )
4 simpll 519 . . . . . . . . . . . . . 14  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  x  C_ 
{ (/) } )
5 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  y  e.  x )
64, 5sseldd 3143 . . . . . . . . . . . . 13  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  y  e.  { (/) } )
7 velsn 3593 . . . . . . . . . . . . 13  |-  ( y  e.  { (/) }  <->  y  =  (/) )
86, 7sylib 121 . . . . . . . . . . . 12  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  y  =  (/) )
98, 5eqeltrrd 2244 . . . . . . . . . . 11  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  (/)  e.  x
)
10 simplr 520 . . . . . . . . . . 11  |-  ( ( ( x  C_  { (/) }  /\  -.  (/)  e.  x
)  /\  y  e.  x )  ->  -.  (/) 
e.  x )
119, 10pm2.65da 651 . . . . . . . . . 10  |-  ( ( x  C_  { (/) }  /\  -.  (/)  e.  x )  ->  -.  y  e.  x )
1211eq0rdv 3453 . . . . . . . . 9  |-  ( ( x  C_  { (/) }  /\  -.  (/)  e.  x )  ->  x  =  (/) )
1312ex 114 . . . . . . . 8  |-  ( x 
C_  { (/) }  ->  ( -.  (/)  e.  x  ->  x  =  (/) ) )
14 noel 3413 . . . . . . . . 9  |-  -.  (/)  e.  (/)
15 eleq2 2230 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
1614, 15mtbiri 665 . . . . . . . 8  |-  ( x  =  (/)  ->  -.  (/)  e.  x
)
1713, 16impbid1 141 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  ( -.  (/)  e.  x  <->  x  =  (/) ) )
18 ss1o0el1 4176 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  (
(/)  e.  x  <->  x  =  { (/) } ) )
1917, 18orbi12d 783 . . . . . 6  |-  ( x 
C_  { (/) }  ->  ( ( -.  (/)  e.  x  \/  (/)  e.  x )  <-> 
( x  =  (/)  \/  x  =  { (/) } ) ) )
203, 19syl5bb 191 . . . . 5  |-  ( x 
C_  { (/) }  ->  ( ( (/)  e.  x  \/  -.  (/)  e.  x )  <-> 
( x  =  (/)  \/  x  =  { (/) } ) ) )
212, 20syl5bb 191 . . . 4  |-  ( x 
C_  { (/) }  ->  (DECID  (/)  e.  x  <->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
2221pm5.74i 179 . . 3  |-  ( ( x  C_  { (/) }  -> DECID  (/)  e.  x
)  <->  ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2322albii 1458 . 2  |-  ( A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x )  <->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
241, 23bitri 183 1  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824   A.wal 1341    = wceq 1343    e. wcel 2136    C_ wss 3116   (/)c0 3409   {csn 3576  EXMIDwem 4173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-exmid 4174
This theorem is referenced by:  exmid1dc  4179  exmidn0m  4180  exmidsssn  4181  exmidpw  6874  exmidpweq  6875  exmidomni  7106  ss1oel2o  13873  exmidsbthrlem  13901  sbthom  13905
  Copyright terms: Public domain W3C validator