| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suppssfv | Unicode version | ||
| Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| suppssfv.a |
|
| suppssfv.f |
|
| suppssfv.v |
|
| Ref | Expression |
|---|---|
| suppssfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 3773 |
. . . . 5
| |
| 2 | suppssfv.v |
. . . . . . . . 9
| |
| 3 | elex 2788 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . 8
|
| 5 | 4 | adantr 276 |
. . . . . . 7
|
| 6 | suppssfv.f |
. . . . . . . . . . 11
| |
| 7 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 8 | 7 | eqeq1d 2216 |
. . . . . . . . . . 11
|
| 9 | 6, 8 | syl5ibrcom 157 |
. . . . . . . . . 10
|
| 10 | 9 | necon3d 2422 |
. . . . . . . . 9
|
| 11 | 10 | adantr 276 |
. . . . . . . 8
|
| 12 | 11 | imp 124 |
. . . . . . 7
|
| 13 | eldifsn 3771 |
. . . . . . 7
| |
| 14 | 5, 12, 13 | sylanbrc 417 |
. . . . . 6
|
| 15 | 14 | ex 115 |
. . . . 5
|
| 16 | 1, 15 | syl5 32 |
. . . 4
|
| 17 | 16 | ss2rabdv 3282 |
. . 3
|
| 18 | eqid 2207 |
. . . 4
| |
| 19 | 18 | mptpreima 5195 |
. . 3
|
| 20 | eqid 2207 |
. . . 4
| |
| 21 | 20 | mptpreima 5195 |
. . 3
|
| 22 | 17, 19, 21 | 3sstr4g 3244 |
. 2
|
| 23 | suppssfv.a |
. 2
| |
| 24 | 22, 23 | sstrd 3211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |