ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssfv Unicode version

Theorem suppssfv 6097
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssfv.a  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
suppssfv.f  |-  ( ph  ->  ( F `  Y
)  =  Z )
suppssfv.v  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
Assertion
Ref Expression
suppssfv  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  L )
Distinct variable groups:    ph, x    x, Y    x, Z
Allowed substitution hints:    A( x)    D( x)    F( x)    L( x)    V( x)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 3736 . . . . 5  |-  ( ( F `  A )  e.  ( _V  \  { Z } )  -> 
( F `  A
)  =/=  Z )
2 suppssfv.v . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
3 elex 2763 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  _V )
42, 3syl 14 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  _V )
54adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  e.  _V )
6 suppssfv.f . . . . . . . . . . 11  |-  ( ph  ->  ( F `  Y
)  =  Z )
7 fveq2 5530 . . . . . . . . . . . 12  |-  ( A  =  Y  ->  ( F `  A )  =  ( F `  Y ) )
87eqeq1d 2198 . . . . . . . . . . 11  |-  ( A  =  Y  ->  (
( F `  A
)  =  Z  <->  ( F `  Y )  =  Z ) )
96, 8syl5ibrcom 157 . . . . . . . . . 10  |-  ( ph  ->  ( A  =  Y  ->  ( F `  A )  =  Z ) )
109necon3d 2404 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =/=  Z  ->  A  =/=  Y ) )
1110adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  =/=  Z  ->  A  =/=  Y ) )
1211imp 124 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  =/=  Y )
13 eldifsn 3734 . . . . . . 7  |-  ( A  e.  ( _V  \  { Y } )  <->  ( A  e.  _V  /\  A  =/= 
Y ) )
145, 12, 13sylanbrc 417 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  e.  ( _V  \  { Y } ) )
1514ex 115 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  =/=  Z  ->  A  e.  ( _V  \  { Y } ) ) )
161, 15syl5 32 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  e.  ( _V 
\  { Z }
)  ->  A  e.  ( _V  \  { Y } ) ) )
1716ss2rabdv 3251 . . 3  |-  ( ph  ->  { x  e.  D  |  ( F `  A )  e.  ( _V  \  { Z } ) }  C_  { x  e.  D  |  A  e.  ( _V  \  { Y } ) } )
18 eqid 2189 . . . 4  |-  ( x  e.  D  |->  ( F `
 A ) )  =  ( x  e.  D  |->  ( F `  A ) )
1918mptpreima 5137 . . 3  |-  ( `' ( x  e.  D  |->  ( F `  A
) ) " ( _V  \  { Z }
) )  =  {
x  e.  D  | 
( F `  A
)  e.  ( _V 
\  { Z }
) }
20 eqid 2189 . . . 4  |-  ( x  e.  D  |->  A )  =  ( x  e.  D  |->  A )
2120mptpreima 5137 . . 3  |-  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
) )  =  {
x  e.  D  |  A  e.  ( _V  \  { Y } ) }
2217, 19, 213sstr4g 3213 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  ( `' ( x  e.  D  |->  A ) " ( _V 
\  { Y }
) ) )
23 suppssfv.a . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
2422, 23sstrd 3180 1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    =/= wne 2360   {crab 2472   _Vcvv 2752    \ cdif 3141    C_ wss 3144   {csn 3607    |-> cmpt 4079   `'ccnv 4640   "cima 4644   ` cfv 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-xp 4647  df-rel 4648  df-cnv 4649  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fv 5239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator