| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suppssov1 | Unicode version | ||
| Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| suppssov1.s |
|
| suppssov1.o |
|
| suppssov1.a |
|
| suppssov1.b |
|
| Ref | Expression |
|---|---|
| suppssov1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssov1.a |
. . . . . . . 8
| |
| 2 | elex 2791 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | eldifsni 3776 |
. . . . . . . 8
| |
| 6 | oveq2 5982 |
. . . . . . . . . . . 12
| |
| 7 | 6 | eqeq1d 2218 |
. . . . . . . . . . 11
|
| 8 | suppssov1.o |
. . . . . . . . . . . . 13
| |
| 9 | 8 | ralrimiva 2583 |
. . . . . . . . . . . 12
|
| 10 | 9 | adantr 276 |
. . . . . . . . . . 11
|
| 11 | suppssov1.b |
. . . . . . . . . . 11
| |
| 12 | 7, 10, 11 | rspcdva 2892 |
. . . . . . . . . 10
|
| 13 | oveq1 5981 |
. . . . . . . . . . 11
| |
| 14 | 13 | eqeq1d 2218 |
. . . . . . . . . 10
|
| 15 | 12, 14 | syl5ibrcom 157 |
. . . . . . . . 9
|
| 16 | 15 | necon3d 2424 |
. . . . . . . 8
|
| 17 | 5, 16 | syl5 32 |
. . . . . . 7
|
| 18 | 17 | imp 124 |
. . . . . 6
|
| 19 | eldifsn 3774 |
. . . . . 6
| |
| 20 | 4, 18, 19 | sylanbrc 417 |
. . . . 5
|
| 21 | 20 | ex 115 |
. . . 4
|
| 22 | 21 | ss2rabdv 3285 |
. . 3
|
| 23 | eqid 2209 |
. . . 4
| |
| 24 | 23 | mptpreima 5198 |
. . 3
|
| 25 | eqid 2209 |
. . . 4
| |
| 26 | 25 | mptpreima 5198 |
. . 3
|
| 27 | 22, 24, 26 | 3sstr4g 3247 |
. 2
|
| 28 | suppssov1.s |
. 2
| |
| 29 | 27, 28 | sstrd 3214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-xp 4702 df-rel 4703 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fv 5302 df-ov 5977 |
| This theorem is referenced by: suppssof1 6206 |
| Copyright terms: Public domain | W3C validator |