ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssov1 Unicode version

Theorem suppssov1 5853
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssov1.s  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
suppssov1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssov1.a  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
suppssov1.b  |-  ( (
ph  /\  x  e.  D )  ->  B  e.  R )
Assertion
Ref Expression
suppssov1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  L )
Distinct variable groups:    ph, v    ph, x    v, B    v, O    v, R    v, Y    x, Y    v, Z    x, Z
Allowed substitution hints:    A( x, v)    B( x)    D( x, v)    R( x)    L( x, v)    O( x)    V( x, v)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
2 elex 2630 . . . . . . . 8  |-  ( A  e.  V  ->  A  e.  _V )
31, 2syl 14 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  _V )
43adantr 270 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  e.  _V )
5 eldifsni 3569 . . . . . . . 8  |-  ( ( A O B )  e.  ( _V  \  { Z } )  -> 
( A O B )  =/=  Z )
6 oveq2 5660 . . . . . . . . . . . 12  |-  ( v  =  B  ->  ( Y O v )  =  ( Y O B ) )
76eqeq1d 2096 . . . . . . . . . . 11  |-  ( v  =  B  ->  (
( Y O v )  =  Z  <->  ( Y O B )  =  Z ) )
8 suppssov1.o . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
98ralrimiva 2446 . . . . . . . . . . . 12  |-  ( ph  ->  A. v  e.  R  ( Y O v )  =  Z )
109adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  A. v  e.  R  ( Y O v )  =  Z )
11 suppssov1.b . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  B  e.  R )
127, 10, 11rspcdva 2727 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  D )  ->  ( Y O B )  =  Z )
13 oveq1 5659 . . . . . . . . . . 11  |-  ( A  =  Y  ->  ( A O B )  =  ( Y O B ) )
1413eqeq1d 2096 . . . . . . . . . 10  |-  ( A  =  Y  ->  (
( A O B )  =  Z  <->  ( Y O B )  =  Z ) )
1512, 14syl5ibrcom 155 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  ( A  =  Y  ->  ( A O B )  =  Z ) )
1615necon3d 2299 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  =/=  Z  ->  A  =/=  Y ) )
175, 16syl5 32 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  e.  ( _V 
\  { Z }
)  ->  A  =/=  Y ) )
1817imp 122 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  =/=  Y )
19 eldifsn 3567 . . . . . 6  |-  ( A  e.  ( _V  \  { Y } )  <->  ( A  e.  _V  /\  A  =/= 
Y ) )
204, 18, 19sylanbrc 408 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  e.  ( _V  \  { Y } ) )
2120ex 113 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  e.  ( _V 
\  { Z }
)  ->  A  e.  ( _V  \  { Y } ) ) )
2221ss2rabdv 3102 . . 3  |-  ( ph  ->  { x  e.  D  |  ( A O B )  e.  ( _V  \  { Z } ) }  C_  { x  e.  D  |  A  e.  ( _V  \  { Y } ) } )
23 eqid 2088 . . . 4  |-  ( x  e.  D  |->  ( A O B ) )  =  ( x  e.  D  |->  ( A O B ) )
2423mptpreima 4924 . . 3  |-  ( `' ( x  e.  D  |->  ( A O B ) ) " ( _V  \  { Z }
) )  =  {
x  e.  D  | 
( A O B )  e.  ( _V 
\  { Z }
) }
25 eqid 2088 . . . 4  |-  ( x  e.  D  |->  A )  =  ( x  e.  D  |->  A )
2625mptpreima 4924 . . 3  |-  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
) )  =  {
x  e.  D  |  A  e.  ( _V  \  { Y } ) }
2722, 24, 263sstr4g 3067 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  ( `' ( x  e.  D  |->  A ) " ( _V 
\  { Y }
) ) )
28 suppssov1.s . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
2927, 28sstrd 3035 1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438    =/= wne 2255   A.wral 2359   {crab 2363   _Vcvv 2619    \ cdif 2996    C_ wss 2999   {csn 3446    |-> cmpt 3899   `'ccnv 4437   "cima 4441  (class class class)co 5652
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-xp 4444  df-rel 4445  df-cnv 4446  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fv 5023  df-ov 5655
This theorem is referenced by:  suppssof1  5872
  Copyright terms: Public domain W3C validator