| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suppssov1 | Unicode version | ||
| Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| suppssov1.s |
|
| suppssov1.o |
|
| suppssov1.a |
|
| suppssov1.b |
|
| Ref | Expression |
|---|---|
| suppssov1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssov1.a |
. . . . . . . 8
| |
| 2 | elex 2784 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | eldifsni 3764 |
. . . . . . . 8
| |
| 6 | oveq2 5959 |
. . . . . . . . . . . 12
| |
| 7 | 6 | eqeq1d 2215 |
. . . . . . . . . . 11
|
| 8 | suppssov1.o |
. . . . . . . . . . . . 13
| |
| 9 | 8 | ralrimiva 2580 |
. . . . . . . . . . . 12
|
| 10 | 9 | adantr 276 |
. . . . . . . . . . 11
|
| 11 | suppssov1.b |
. . . . . . . . . . 11
| |
| 12 | 7, 10, 11 | rspcdva 2883 |
. . . . . . . . . 10
|
| 13 | oveq1 5958 |
. . . . . . . . . . 11
| |
| 14 | 13 | eqeq1d 2215 |
. . . . . . . . . 10
|
| 15 | 12, 14 | syl5ibrcom 157 |
. . . . . . . . 9
|
| 16 | 15 | necon3d 2421 |
. . . . . . . 8
|
| 17 | 5, 16 | syl5 32 |
. . . . . . 7
|
| 18 | 17 | imp 124 |
. . . . . 6
|
| 19 | eldifsn 3762 |
. . . . . 6
| |
| 20 | 4, 18, 19 | sylanbrc 417 |
. . . . 5
|
| 21 | 20 | ex 115 |
. . . 4
|
| 22 | 21 | ss2rabdv 3275 |
. . 3
|
| 23 | eqid 2206 |
. . . 4
| |
| 24 | 23 | mptpreima 5181 |
. . 3
|
| 25 | eqid 2206 |
. . . 4
| |
| 26 | 25 | mptpreima 5181 |
. . 3
|
| 27 | 22, 24, 26 | 3sstr4g 3237 |
. 2
|
| 28 | suppssov1.s |
. 2
| |
| 29 | 27, 28 | sstrd 3204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-xp 4685 df-rel 4686 df-cnv 4687 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fv 5284 df-ov 5954 |
| This theorem is referenced by: suppssof1 6183 |
| Copyright terms: Public domain | W3C validator |