| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlem2 | Unicode version | ||
| Description: Lemma for isbth 7033. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| Ref | Expression |
|---|---|
| sbthlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 |
. . . . . . . . 9
| |
| 2 | sbthlem.2 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sbthlem1 7023 |
. . . . . . . 8
|
| 4 | imass2 5045 |
. . . . . . . 8
| |
| 5 | sscon 3297 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | mp2b 8 |
. . . . . . 7
|
| 7 | imass2 5045 |
. . . . . . 7
| |
| 8 | sscon 3297 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | mp2b 8 |
. . . . . 6
|
| 10 | imassrn 5020 |
. . . . . . . 8
| |
| 11 | sstr2 3190 |
. . . . . . . 8
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . 7
|
| 13 | difss 3289 |
. . . . . . 7
| |
| 14 | ssconb 3296 |
. . . . . . 7
| |
| 15 | 12, 13, 14 | sylancl 413 |
. . . . . 6
|
| 16 | 9, 15 | mpbiri 168 |
. . . . 5
|
| 17 | 16, 13 | jctil 312 |
. . . 4
|
| 18 | 1, 13 | ssexi 4171 |
. . . . 5
|
| 19 | sseq1 3206 |
. . . . . 6
| |
| 20 | imaeq2 5005 |
. . . . . . . . 9
| |
| 21 | 20 | difeq2d 3281 |
. . . . . . . 8
|
| 22 | 21 | imaeq2d 5009 |
. . . . . . 7
|
| 23 | difeq2 3275 |
. . . . . . 7
| |
| 24 | 22, 23 | sseq12d 3214 |
. . . . . 6
|
| 25 | 19, 24 | anbi12d 473 |
. . . . 5
|
| 26 | 18, 25 | elab 2908 |
. . . 4
|
| 27 | 17, 26 | sylibr 134 |
. . 3
|
| 28 | 27, 2 | eleqtrrdi 2290 |
. 2
|
| 29 | elssuni 3867 |
. 2
| |
| 30 | 28, 29 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
| This theorem is referenced by: sbthlemi3 7025 |
| Copyright terms: Public domain | W3C validator |