| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlem2 | Unicode version | ||
| Description: Lemma for isbth 7134. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| Ref | Expression |
|---|---|
| sbthlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 |
. . . . . . . . 9
| |
| 2 | sbthlem.2 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sbthlem1 7124 |
. . . . . . . 8
|
| 4 | imass2 5104 |
. . . . . . . 8
| |
| 5 | sscon 3338 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | mp2b 8 |
. . . . . . 7
|
| 7 | imass2 5104 |
. . . . . . 7
| |
| 8 | sscon 3338 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | mp2b 8 |
. . . . . 6
|
| 10 | imassrn 5079 |
. . . . . . . 8
| |
| 11 | sstr2 3231 |
. . . . . . . 8
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . 7
|
| 13 | difss 3330 |
. . . . . . 7
| |
| 14 | ssconb 3337 |
. . . . . . 7
| |
| 15 | 12, 13, 14 | sylancl 413 |
. . . . . 6
|
| 16 | 9, 15 | mpbiri 168 |
. . . . 5
|
| 17 | 16, 13 | jctil 312 |
. . . 4
|
| 18 | 1, 13 | ssexi 4222 |
. . . . 5
|
| 19 | sseq1 3247 |
. . . . . 6
| |
| 20 | imaeq2 5064 |
. . . . . . . . 9
| |
| 21 | 20 | difeq2d 3322 |
. . . . . . . 8
|
| 22 | 21 | imaeq2d 5068 |
. . . . . . 7
|
| 23 | difeq2 3316 |
. . . . . . 7
| |
| 24 | 22, 23 | sseq12d 3255 |
. . . . . 6
|
| 25 | 19, 24 | anbi12d 473 |
. . . . 5
|
| 26 | 18, 25 | elab 2947 |
. . . 4
|
| 27 | 17, 26 | sylibr 134 |
. . 3
|
| 28 | 27, 2 | eleqtrrdi 2323 |
. 2
|
| 29 | elssuni 3916 |
. 2
| |
| 30 | 28, 29 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: sbthlemi3 7126 |
| Copyright terms: Public domain | W3C validator |