Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlem2 | Unicode version |
Description: Lemma for isbth 6932. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 |
Ref | Expression |
---|---|
sbthlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.1 | . . . . . . . . 9 | |
2 | sbthlem.2 | . . . . . . . . 9 | |
3 | 1, 2 | sbthlem1 6922 | . . . . . . . 8 |
4 | imass2 4980 | . . . . . . . 8 | |
5 | sscon 3256 | . . . . . . . 8 | |
6 | 3, 4, 5 | mp2b 8 | . . . . . . 7 |
7 | imass2 4980 | . . . . . . 7 | |
8 | sscon 3256 | . . . . . . 7 | |
9 | 6, 7, 8 | mp2b 8 | . . . . . 6 |
10 | imassrn 4957 | . . . . . . . 8 | |
11 | sstr2 3149 | . . . . . . . 8 | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 |
13 | difss 3248 | . . . . . . 7 | |
14 | ssconb 3255 | . . . . . . 7 | |
15 | 12, 13, 14 | sylancl 410 | . . . . . 6 |
16 | 9, 15 | mpbiri 167 | . . . . 5 |
17 | 16, 13 | jctil 310 | . . . 4 |
18 | 1, 13 | ssexi 4120 | . . . . 5 |
19 | sseq1 3165 | . . . . . 6 | |
20 | imaeq2 4942 | . . . . . . . . 9 | |
21 | 20 | difeq2d 3240 | . . . . . . . 8 |
22 | 21 | imaeq2d 4946 | . . . . . . 7 |
23 | difeq2 3234 | . . . . . . 7 | |
24 | 22, 23 | sseq12d 3173 | . . . . . 6 |
25 | 19, 24 | anbi12d 465 | . . . . 5 |
26 | 18, 25 | elab 2870 | . . . 4 |
27 | 17, 26 | sylibr 133 | . . 3 |
28 | 27, 2 | eleqtrrdi 2260 | . 2 |
29 | elssuni 3817 | . 2 | |
30 | 28, 29 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 cvv 2726 cdif 3113 wss 3116 cuni 3789 crn 4605 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: sbthlemi3 6924 |
Copyright terms: Public domain | W3C validator |