ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem2 Unicode version

Theorem sbthlem2 6935
Description: Lemma for isbth 6944. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem2  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem2
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
2 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem1 6934 . . . . . . . 8  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
4 imass2 4987 . . . . . . . 8  |-  ( U. D  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( f " U. D )  C_  ( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
5 sscon 3261 . . . . . . . 8  |-  ( ( f " U. D
)  C_  ( f " ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) )  ->  ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) ) )
63, 4, 5mp2b 8 . . . . . . 7  |-  ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) )
7 imass2 4987 . . . . . . 7  |-  ( ( B  \  ( f
" ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) )  ->  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( g "
( B  \  (
f " U. D
) ) ) )
8 sscon 3261 . . . . . . 7  |-  ( ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( g "
( B  \  (
f " U. D
) ) )  -> 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) )
96, 7, 8mp2b 8 . . . . . 6  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  ( A  \ 
( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
10 imassrn 4964 . . . . . . . 8  |-  ( g
" ( B  \ 
( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ran  g
11 sstr2 3154 . . . . . . . 8  |-  ( ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A ) )
1210, 11ax-mp 5 . . . . . . 7  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A )
13 difss 3253 . . . . . . 7  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A
14 ssconb 3260 . . . . . . 7  |-  ( ( ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A  /\  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A )  -> 
( ( g "
( B  \  (
f " ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) )  <->  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) ) )
1512, 13, 14sylancl 411 . . . . . 6  |-  ( ran  g  C_  A  ->  ( ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  <->  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) ) )
169, 15mpbiri 167 . . . . 5  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )
1716, 13jctil 310 . . . 4  |-  ( ran  g  C_  A  ->  ( ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  A  /\  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) )
181, 13ssexi 4127 . . . . 5  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) )  e.  _V
19 sseq1 3170 . . . . . 6  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( x  C_  A  <->  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  A )
)
20 imaeq2 4949 . . . . . . . . 9  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( f " x )  =  ( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
2120difeq2d 3245 . . . . . . . 8  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( B  \  ( f " x
) )  =  ( B  \  ( f
" ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) ) )
2221imaeq2d 4953 . . . . . . 7  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( g " ( B  \ 
( f " x
) ) )  =  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
23 difeq2 3239 . . . . . . 7  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( A  \  x )  =  ( A  \  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
2422, 23sseq12d 3178 . . . . . 6  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( (
g " ( B 
\  ( f "
x ) ) ) 
C_  ( A  \  x )  <->  ( g " ( B  \ 
( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )
2519, 24anbi12d 470 . . . . 5  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( (
x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) )  <->  ( ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A  /\  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
2618, 25elab 2874 . . . 4  |-  ( ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  { x  |  ( x  C_  A  /\  ( g "
( B  \  (
f " x ) ) )  C_  ( A  \  x ) ) }  <->  ( ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A  /\  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) )
2717, 26sylibr 133 . . 3  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  { x  |  ( x  C_  A  /\  ( g "
( B  \  (
f " x ) ) )  C_  ( A  \  x ) ) } )
2827, 2eleqtrrdi 2264 . 2  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  D )
29 elssuni 3824 . 2  |-  ( ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  D  -> 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  U. D )
3028, 29syl 14 1  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   _Vcvv 2730    \ cdif 3118    C_ wss 3121   U.cuni 3796   ran crn 4612   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  sbthlemi3  6936
  Copyright terms: Public domain W3C validator