![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr3id.1 |
![]() ![]() ![]() ![]() |
eqtr3id.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr3id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3id.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2191 |
. 2
![]() ![]() ![]() ![]() |
3 | eqtr3id.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtrid 2232 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-4 1520 ax-17 1536 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 |
This theorem is referenced by: 3eqtr3g 2243 csbeq1a 3078 ssdifeq0 3517 pofun 4324 opabbi2dv 4788 funimaexg 5312 fresin 5406 f1imacnv 5490 foimacnv 5491 fsn2 5703 fmptpr 5721 funiunfvdm 5777 funiunfvdmf 5778 fcof1o 5803 f1opw2 6091 fnexALT 6126 eqerlem 6580 pmresg 6690 mapsn 6704 fopwdom 6850 mapen 6860 fiintim 6942 xpfi 6943 sbthlemi8 6977 sbthlemi9 6978 ctssdccl 7124 exmidfodomrlemim 7214 mul02 8358 recdivap 8689 fzpreddisj 10085 fzshftral 10122 qbtwnrelemcalc 10270 frec2uzrdg 10423 frecuzrdgrcl 10424 frecuzrdgsuc 10428 frecuzrdgrclt 10429 frecuzrdgg 10430 binom3 10652 bcn2 10758 hashfz1 10777 hashunlem 10798 hashfacen 10830 cnrecnv 10933 resqrexlemnm 11041 amgm2 11141 2zsupmax 11248 xrmaxltsup 11280 xrmaxadd 11283 xrbdtri 11298 fisumss 11414 fsumcnv 11459 telfsumo 11488 fsumiun 11499 arisum2 11521 fprodssdc 11612 fprodsplitdc 11618 fprodsplit 11619 fprodcnv 11647 ege2le3 11693 efgt1p 11718 cos01bnd 11780 suprzubdc 11967 dfgcd3 12025 eucalgval 12068 sqrt2irrlem 12175 pcid 12337 setsslid 12527 ressinbasd 12548 xpsff1o 12787 grpressid 12958 crng2idl 13718 baspartn 13846 txdis1cn 14074 cnmpt21 14087 cnmpt22 14090 hmeores 14111 metreslem 14176 remetdval 14335 dvfvalap 14446 binom4 14693 1lgs 14740 lgs1 14741 lgseisenlem1 14746 lgseisenlem2 14747 nninfsellemqall 15061 |
Copyright terms: Public domain | W3C validator |