| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 |
|
| eqtr3id.2 |
|
| Ref | Expression |
|---|---|
| eqtr3id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 |
. . 3
| |
| 2 | 1 | eqcomi 2209 |
. 2
|
| 3 | eqtr3id.2 |
. 2
| |
| 4 | 2, 3 | eqtrid 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtr3g 2261 csbeq1a 3102 ssdifeq0 3543 pofun 4360 opabbi2dv 4828 funimaexg 5359 fresin 5456 f1imacnv 5541 foimacnv 5542 fsn2 5756 fmptpr 5778 funiunfvdm 5834 funiunfvdmf 5835 fcof1o 5860 f1opw2 6154 fnexALT 6198 eqerlem 6653 pmresg 6765 mapsn 6779 en2 6914 fopwdom 6935 mapen 6945 fiintim 7030 xpfi 7031 sbthlemi8 7068 sbthlemi9 7069 ctssdccl 7215 exmidfodomrlemim 7311 mul02 8461 recdivap 8793 fzpreddisj 10195 fzshftral 10232 suprzubdc 10381 qbtwnrelemcalc 10400 frec2uzrdg 10556 frecuzrdgrcl 10557 frecuzrdgsuc 10561 frecuzrdgrclt 10562 frecuzrdgg 10563 seqf1oglem2 10667 binom3 10804 bcn2 10911 hashfz1 10930 hashunlem 10951 hashfacen 10983 cnrecnv 11254 resqrexlemnm 11362 amgm2 11462 2zsupmax 11570 xrmaxltsup 11602 xrmaxadd 11605 xrbdtri 11620 fisumss 11736 fsumcnv 11781 telfsumo 11810 fsumiun 11821 arisum2 11843 fprodssdc 11934 fprodsplitdc 11940 fprodsplit 11941 fprodcnv 11969 ege2le3 12015 efgt1p 12040 cos01bnd 12102 dfgcd3 12364 eucalgval 12409 sqrt2irrlem 12516 pcid 12680 4sqlem15 12761 4sqlem16 12762 setsslid 12916 ressinbasd 12939 xpsff1o 13214 grpressid 13426 crng2idl 14326 znleval 14448 baspartn 14555 txdis1cn 14783 cnmpt21 14796 cnmpt22 14799 hmeores 14820 metreslem 14885 remetdval 15052 dvfvalap 15186 binom4 15484 mpodvdsmulf1o 15495 perfectlem2 15505 1lgs 15553 lgs1 15554 lgseisenlem1 15580 lgseisenlem2 15581 lgseisenlem3 15582 lgsquadlem2 15588 lgsquad2lem2 15592 nninfsellemqall 15989 nninfnfiinf 15997 |
| Copyright terms: Public domain | W3C validator |