![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr3id.1 |
![]() ![]() ![]() ![]() |
eqtr3id.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr3id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3id.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
3 | eqtr3id.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtrid 2238 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtr3g 2249 csbeq1a 3090 ssdifeq0 3530 pofun 4344 opabbi2dv 4812 funimaexg 5339 fresin 5433 f1imacnv 5518 foimacnv 5519 fsn2 5733 fmptpr 5751 funiunfvdm 5807 funiunfvdmf 5808 fcof1o 5833 f1opw2 6126 fnexALT 6165 eqerlem 6620 pmresg 6732 mapsn 6746 fopwdom 6894 mapen 6904 fiintim 6987 xpfi 6988 sbthlemi8 7025 sbthlemi9 7026 ctssdccl 7172 exmidfodomrlemim 7263 mul02 8408 recdivap 8739 fzpreddisj 10140 fzshftral 10177 qbtwnrelemcalc 10327 frec2uzrdg 10483 frecuzrdgrcl 10484 frecuzrdgsuc 10488 frecuzrdgrclt 10489 frecuzrdgg 10490 seqf1oglem2 10594 binom3 10731 bcn2 10838 hashfz1 10857 hashunlem 10878 hashfacen 10910 cnrecnv 11057 resqrexlemnm 11165 amgm2 11265 2zsupmax 11372 xrmaxltsup 11404 xrmaxadd 11407 xrbdtri 11422 fisumss 11538 fsumcnv 11583 telfsumo 11612 fsumiun 11623 arisum2 11645 fprodssdc 11736 fprodsplitdc 11742 fprodsplit 11743 fprodcnv 11771 ege2le3 11817 efgt1p 11842 cos01bnd 11904 suprzubdc 12092 dfgcd3 12150 eucalgval 12195 sqrt2irrlem 12302 pcid 12465 4sqlem15 12546 4sqlem16 12547 setsslid 12672 ressinbasd 12695 xpsff1o 12935 grpressid 13136 crng2idl 14030 znleval 14152 baspartn 14229 txdis1cn 14457 cnmpt21 14470 cnmpt22 14473 hmeores 14494 metreslem 14559 remetdval 14726 dvfvalap 14860 binom4 15152 1lgs 15200 lgs1 15201 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgsquadlem2 15235 lgsquad2lem2 15239 nninfsellemqall 15575 |
Copyright terms: Public domain | W3C validator |