| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 |
|
| eqtr3id.2 |
|
| Ref | Expression |
|---|---|
| eqtr3id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 |
. . 3
| |
| 2 | 1 | eqcomi 2233 |
. 2
|
| 3 | eqtr3id.2 |
. 2
| |
| 4 | 2, 3 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: 3eqtr3g 2285 csbeq1a 3133 ssdifeq0 3574 pofun 4403 opabbi2dv 4871 funimaexg 5405 fresin 5504 f1imacnv 5589 foimacnv 5590 fsn2 5809 fmptpr 5831 funiunfvdm 5887 funiunfvdmf 5888 fcof1o 5913 f1opw2 6212 fnexALT 6256 eqerlem 6711 pmresg 6823 mapsn 6837 en2 6973 fopwdom 6997 mapen 7007 fiintim 7093 xpfi 7094 sbthlemi8 7131 sbthlemi9 7132 ctssdccl 7278 exmidfodomrlemim 7379 mul02 8533 recdivap 8865 fzpreddisj 10267 fzshftral 10304 suprzubdc 10456 qbtwnrelemcalc 10475 frec2uzrdg 10631 frecuzrdgrcl 10632 frecuzrdgsuc 10636 frecuzrdgrclt 10637 frecuzrdgg 10638 seqf1oglem2 10742 binom3 10879 bcn2 10986 hashfz1 11005 hashunlem 11026 hashfacen 11058 cnrecnv 11421 resqrexlemnm 11529 amgm2 11629 2zsupmax 11737 xrmaxltsup 11769 xrmaxadd 11772 xrbdtri 11787 fisumss 11903 fsumcnv 11948 telfsumo 11977 fsumiun 11988 arisum2 12010 fprodssdc 12101 fprodsplitdc 12107 fprodsplit 12108 fprodcnv 12136 ege2le3 12182 efgt1p 12207 cos01bnd 12269 dfgcd3 12531 eucalgval 12576 sqrt2irrlem 12683 pcid 12847 4sqlem15 12928 4sqlem16 12929 setsslid 13083 ressinbasd 13107 xpsff1o 13382 grpressid 13594 crng2idl 14495 znleval 14617 baspartn 14724 txdis1cn 14952 cnmpt21 14965 cnmpt22 14968 hmeores 14989 metreslem 15054 remetdval 15221 dvfvalap 15355 binom4 15653 mpodvdsmulf1o 15664 perfectlem2 15674 1lgs 15722 lgs1 15723 lgseisenlem1 15749 lgseisenlem2 15750 lgseisenlem3 15751 lgsquadlem2 15757 lgsquad2lem2 15761 nninfsellemqall 16381 nninfnfiinf 16389 |
| Copyright terms: Public domain | W3C validator |