| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eqtr3id.1 | 
 | 
| eqtr3id.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqtr3id | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqtr3id.1 | 
. . 3
 | |
| 2 | 1 | eqcomi 2200 | 
. 2
 | 
| 3 | eqtr3id.2 | 
. 2
 | |
| 4 | 2, 3 | eqtrid 2241 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: 3eqtr3g 2252 csbeq1a 3093 ssdifeq0 3533 pofun 4347 opabbi2dv 4815 funimaexg 5342 fresin 5436 f1imacnv 5521 foimacnv 5522 fsn2 5736 fmptpr 5754 funiunfvdm 5810 funiunfvdmf 5811 fcof1o 5836 f1opw2 6129 fnexALT 6168 eqerlem 6623 pmresg 6735 mapsn 6749 fopwdom 6897 mapen 6907 fiintim 6992 xpfi 6993 sbthlemi8 7030 sbthlemi9 7031 ctssdccl 7177 exmidfodomrlemim 7268 mul02 8413 recdivap 8745 fzpreddisj 10146 fzshftral 10183 suprzubdc 10326 qbtwnrelemcalc 10345 frec2uzrdg 10501 frecuzrdgrcl 10502 frecuzrdgsuc 10506 frecuzrdgrclt 10507 frecuzrdgg 10508 seqf1oglem2 10612 binom3 10749 bcn2 10856 hashfz1 10875 hashunlem 10896 hashfacen 10928 cnrecnv 11075 resqrexlemnm 11183 amgm2 11283 2zsupmax 11391 xrmaxltsup 11423 xrmaxadd 11426 xrbdtri 11441 fisumss 11557 fsumcnv 11602 telfsumo 11631 fsumiun 11642 arisum2 11664 fprodssdc 11755 fprodsplitdc 11761 fprodsplit 11762 fprodcnv 11790 ege2le3 11836 efgt1p 11861 cos01bnd 11923 dfgcd3 12177 eucalgval 12222 sqrt2irrlem 12329 pcid 12493 4sqlem15 12574 4sqlem16 12575 setsslid 12729 ressinbasd 12752 xpsff1o 12992 grpressid 13193 crng2idl 14087 znleval 14209 baspartn 14286 txdis1cn 14514 cnmpt21 14527 cnmpt22 14530 hmeores 14551 metreslem 14616 remetdval 14783 dvfvalap 14917 binom4 15215 mpodvdsmulf1o 15226 perfectlem2 15236 1lgs 15284 lgs1 15285 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgsquadlem2 15319 lgsquad2lem2 15323 nninfsellemqall 15659 | 
| Copyright terms: Public domain | W3C validator |