| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 |
|
| eqtr3id.2 |
|
| Ref | Expression |
|---|---|
| eqtr3id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 |
. . 3
| |
| 2 | 1 | eqcomi 2209 |
. 2
|
| 3 | eqtr3id.2 |
. 2
| |
| 4 | 2, 3 | eqtrid 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtr3g 2261 csbeq1a 3102 ssdifeq0 3543 pofun 4359 opabbi2dv 4827 funimaexg 5358 fresin 5454 f1imacnv 5539 foimacnv 5540 fsn2 5754 fmptpr 5776 funiunfvdm 5832 funiunfvdmf 5833 fcof1o 5858 f1opw2 6152 fnexALT 6196 eqerlem 6651 pmresg 6763 mapsn 6777 en2 6912 fopwdom 6933 mapen 6943 fiintim 7028 xpfi 7029 sbthlemi8 7066 sbthlemi9 7067 ctssdccl 7213 exmidfodomrlemim 7309 mul02 8459 recdivap 8791 fzpreddisj 10193 fzshftral 10230 suprzubdc 10379 qbtwnrelemcalc 10398 frec2uzrdg 10554 frecuzrdgrcl 10555 frecuzrdgsuc 10559 frecuzrdgrclt 10560 frecuzrdgg 10561 seqf1oglem2 10665 binom3 10802 bcn2 10909 hashfz1 10928 hashunlem 10949 hashfacen 10981 cnrecnv 11221 resqrexlemnm 11329 amgm2 11429 2zsupmax 11537 xrmaxltsup 11569 xrmaxadd 11572 xrbdtri 11587 fisumss 11703 fsumcnv 11748 telfsumo 11777 fsumiun 11788 arisum2 11810 fprodssdc 11901 fprodsplitdc 11907 fprodsplit 11908 fprodcnv 11936 ege2le3 11982 efgt1p 12007 cos01bnd 12069 dfgcd3 12331 eucalgval 12376 sqrt2irrlem 12483 pcid 12647 4sqlem15 12728 4sqlem16 12729 setsslid 12883 ressinbasd 12906 xpsff1o 13181 grpressid 13393 crng2idl 14293 znleval 14415 baspartn 14522 txdis1cn 14750 cnmpt21 14763 cnmpt22 14766 hmeores 14787 metreslem 14852 remetdval 15019 dvfvalap 15153 binom4 15451 mpodvdsmulf1o 15462 perfectlem2 15472 1lgs 15520 lgs1 15521 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgsquadlem2 15555 lgsquad2lem2 15559 nninfsellemqall 15952 nninfnfiinf 15960 |
| Copyright terms: Public domain | W3C validator |