| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 |
|
| eqtr3id.2 |
|
| Ref | Expression |
|---|---|
| eqtr3id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 |
. . 3
| |
| 2 | 1 | eqcomi 2200 |
. 2
|
| 3 | eqtr3id.2 |
. 2
| |
| 4 | 2, 3 | eqtrid 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr3g 2252 csbeq1a 3093 ssdifeq0 3534 pofun 4348 opabbi2dv 4816 funimaexg 5343 fresin 5439 f1imacnv 5524 foimacnv 5525 fsn2 5739 fmptpr 5757 funiunfvdm 5813 funiunfvdmf 5814 fcof1o 5839 f1opw2 6133 fnexALT 6177 eqerlem 6632 pmresg 6744 mapsn 6758 fopwdom 6906 mapen 6916 fiintim 7001 xpfi 7002 sbthlemi8 7039 sbthlemi9 7040 ctssdccl 7186 exmidfodomrlemim 7280 mul02 8430 recdivap 8762 fzpreddisj 10163 fzshftral 10200 suprzubdc 10343 qbtwnrelemcalc 10362 frec2uzrdg 10518 frecuzrdgrcl 10519 frecuzrdgsuc 10523 frecuzrdgrclt 10524 frecuzrdgg 10525 seqf1oglem2 10629 binom3 10766 bcn2 10873 hashfz1 10892 hashunlem 10913 hashfacen 10945 cnrecnv 11092 resqrexlemnm 11200 amgm2 11300 2zsupmax 11408 xrmaxltsup 11440 xrmaxadd 11443 xrbdtri 11458 fisumss 11574 fsumcnv 11619 telfsumo 11648 fsumiun 11659 arisum2 11681 fprodssdc 11772 fprodsplitdc 11778 fprodsplit 11779 fprodcnv 11807 ege2le3 11853 efgt1p 11878 cos01bnd 11940 dfgcd3 12202 eucalgval 12247 sqrt2irrlem 12354 pcid 12518 4sqlem15 12599 4sqlem16 12600 setsslid 12754 ressinbasd 12777 xpsff1o 13051 grpressid 13263 crng2idl 14163 znleval 14285 baspartn 14370 txdis1cn 14598 cnmpt21 14611 cnmpt22 14614 hmeores 14635 metreslem 14700 remetdval 14867 dvfvalap 15001 binom4 15299 mpodvdsmulf1o 15310 perfectlem2 15320 1lgs 15368 lgs1 15369 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgsquadlem2 15403 lgsquad2lem2 15407 nninfsellemqall 15746 |
| Copyright terms: Public domain | W3C validator |