| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 |
|
| eqtr3id.2 |
|
| Ref | Expression |
|---|---|
| eqtr3id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 |
. . 3
| |
| 2 | 1 | eqcomi 2211 |
. 2
|
| 3 | eqtr3id.2 |
. 2
| |
| 4 | 2, 3 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: 3eqtr3g 2263 csbeq1a 3110 ssdifeq0 3551 pofun 4377 opabbi2dv 4845 funimaexg 5377 fresin 5476 f1imacnv 5561 foimacnv 5562 fsn2 5777 fmptpr 5799 funiunfvdm 5855 funiunfvdmf 5856 fcof1o 5881 f1opw2 6175 fnexALT 6219 eqerlem 6674 pmresg 6786 mapsn 6800 en2 6936 fopwdom 6958 mapen 6968 fiintim 7054 xpfi 7055 sbthlemi8 7092 sbthlemi9 7093 ctssdccl 7239 exmidfodomrlemim 7340 mul02 8494 recdivap 8826 fzpreddisj 10228 fzshftral 10265 suprzubdc 10416 qbtwnrelemcalc 10435 frec2uzrdg 10591 frecuzrdgrcl 10592 frecuzrdgsuc 10596 frecuzrdgrclt 10597 frecuzrdgg 10598 seqf1oglem2 10702 binom3 10839 bcn2 10946 hashfz1 10965 hashunlem 10986 hashfacen 11018 cnrecnv 11336 resqrexlemnm 11444 amgm2 11544 2zsupmax 11652 xrmaxltsup 11684 xrmaxadd 11687 xrbdtri 11702 fisumss 11818 fsumcnv 11863 telfsumo 11892 fsumiun 11903 arisum2 11925 fprodssdc 12016 fprodsplitdc 12022 fprodsplit 12023 fprodcnv 12051 ege2le3 12097 efgt1p 12122 cos01bnd 12184 dfgcd3 12446 eucalgval 12491 sqrt2irrlem 12598 pcid 12762 4sqlem15 12843 4sqlem16 12844 setsslid 12998 ressinbasd 13021 xpsff1o 13296 grpressid 13508 crng2idl 14408 znleval 14530 baspartn 14637 txdis1cn 14865 cnmpt21 14878 cnmpt22 14881 hmeores 14902 metreslem 14967 remetdval 15134 dvfvalap 15268 binom4 15566 mpodvdsmulf1o 15577 perfectlem2 15587 1lgs 15635 lgs1 15636 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgsquadlem2 15670 lgsquad2lem2 15674 nninfsellemqall 16154 nninfnfiinf 16162 |
| Copyright terms: Public domain | W3C validator |