Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr3id.1 | |
eqtr3id.2 |
Ref | Expression |
---|---|
eqtr3id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3id.1 | . . 3 | |
2 | 1 | eqcomi 2169 | . 2 |
3 | eqtr3id.2 | . 2 | |
4 | 2, 3 | syl5eq 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: 3eqtr3g 2222 csbeq1a 3054 ssdifeq0 3491 pofun 4290 opabbi2dv 4753 funimaexg 5272 fresin 5366 f1imacnv 5449 foimacnv 5450 fsn2 5659 fmptpr 5677 funiunfvdm 5731 funiunfvdmf 5732 fcof1o 5757 f1opw2 6044 fnexALT 6079 eqerlem 6532 pmresg 6642 mapsn 6656 fopwdom 6802 mapen 6812 fiintim 6894 xpfi 6895 sbthlemi8 6929 sbthlemi9 6930 ctssdccl 7076 exmidfodomrlemim 7157 mul02 8285 recdivap 8614 fzpreddisj 10006 fzshftral 10043 qbtwnrelemcalc 10191 frec2uzrdg 10344 frecuzrdgrcl 10345 frecuzrdgsuc 10349 frecuzrdgrclt 10350 frecuzrdgg 10351 binom3 10572 bcn2 10677 hashfz1 10696 hashunlem 10717 hashfacen 10749 cnrecnv 10852 resqrexlemnm 10960 amgm2 11060 2zsupmax 11167 xrmaxltsup 11199 xrmaxadd 11202 xrbdtri 11217 fisumss 11333 fsumcnv 11378 telfsumo 11407 fsumiun 11418 arisum2 11440 fprodssdc 11531 fprodsplitdc 11537 fprodsplit 11538 fprodcnv 11566 ege2le3 11612 efgt1p 11637 cos01bnd 11699 suprzubdc 11885 dfgcd3 11943 eucalgval 11986 sqrt2irrlem 12093 pcid 12255 setsslid 12444 baspartn 12688 txdis1cn 12918 cnmpt21 12931 cnmpt22 12934 hmeores 12955 metreslem 13020 remetdval 13179 dvfvalap 13290 binom4 13537 1lgs 13584 lgs1 13585 nninfsellemqall 13895 |
Copyright terms: Public domain | W3C validator |