![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sseq12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseq12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | sseq1d 3199 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | sseq12d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | sseq2d 3200 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: 3sstr3d 3214 3sstr4d 3215 ssdifeq0 3520 relcnvtr 5166 rdgisucinc 6410 oawordriexmid 6495 nnaword 6536 nnawordi 6540 sbthlem2 6987 isbth 6996 nninff 7151 infnninf 7152 infnninfOLD 7153 nnnninf 7154 nnnninfeq 7156 nnnninfeq2 7157 nninfwlpoimlemg 7203 ennnfonelemkh 12463 ennnfonelemrnh 12467 isstruct2im 12522 isstruct2r 12523 basis1 14007 baspartn 14010 eltg 14012 metss 14454 0nninf 15215 nnsf 15216 peano4nninf 15217 nninfalllem1 15219 nninfself 15224 |
Copyright terms: Public domain | W3C validator |