Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseq1d.1 | |
sseq12d.2 |
Ref | Expression |
---|---|
sseq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . . 3 | |
2 | 1 | sseq1d 3157 | . 2 |
3 | sseq12d.2 | . . 3 | |
4 | 3 | sseq2d 3158 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: 3sstr3d 3172 3sstr4d 3173 ssdifeq0 3476 relcnvtr 5102 rdgisucinc 6326 oawordriexmid 6410 nnaword 6451 nnawordi 6455 sbthlem2 6895 isbth 6904 infnninf 7056 infnninfOLD 7057 nnnninf 7058 ennnfonelemkh 12113 ennnfonelemrnh 12117 isstruct2im 12160 isstruct2r 12161 ressid2 12209 ressval2 12210 basis1 12405 baspartn 12408 eltg 12412 metss 12854 0nninf 13537 nninff 13538 nnsf 13539 peano4nninf 13540 nninfalllemn 13542 nninfalllem1 13543 nninfself 13548 |
Copyright terms: Public domain | W3C validator |