| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| sseq12d.2 |
|
| Ref | Expression |
|---|---|
| sseq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. . 3
| |
| 2 | 1 | sseq1d 3221 |
. 2
|
| 3 | sseq12d.2 |
. . 3
| |
| 4 | 3 | sseq2d 3222 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: 3sstr3d 3236 3sstr4d 3237 ssdifeq0 3542 relcnvtr 5199 rdgisucinc 6461 oawordriexmid 6546 nnaword 6587 nnawordi 6591 sbthlem2 7042 isbth 7051 nninff 7206 nninfninc 7207 infnninf 7208 infnninfOLD 7209 nnnninf 7210 nnnninfeq 7212 nnnninfeq2 7213 nninfwlpoimlemg 7259 ennnfonelemkh 12702 ennnfonelemrnh 12706 isstruct2im 12761 isstruct2r 12762 basis1 14437 baspartn 14440 eltg 14442 metss 14884 0nninf 15805 nnsf 15806 peano4nninf 15807 nninfalllem1 15809 nninfself 15814 |
| Copyright terms: Public domain | W3C validator |