| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| sseq12d.2 |
|
| Ref | Expression |
|---|---|
| sseq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. . 3
| |
| 2 | 1 | sseq1d 3253 |
. 2
|
| 3 | sseq12d.2 |
. . 3
| |
| 4 | 3 | sseq2d 3254 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: 3sstr3d 3268 3sstr4d 3269 ssdifeq0 3574 relcnvtr 5247 rdgisucinc 6529 oawordriexmid 6614 nnaword 6655 nnawordi 6659 sbthlem2 7121 isbth 7130 nninff 7285 nninfninc 7286 infnninf 7287 infnninfOLD 7288 nnnninf 7289 nnnninfeq 7291 nnnninfeq2 7292 nninfwlpoimlemg 7338 swrdval 11175 ennnfonelemkh 12978 ennnfonelemrnh 12982 isstruct2im 13037 isstruct2r 13038 basis1 14715 baspartn 14718 eltg 14720 metss 15162 isausgren 15959 wkslem1 16026 wkslem2 16027 iswlk 16029 0nninf 16329 nnsf 16330 peano4nninf 16331 nninfalllem1 16333 nninfself 16338 |
| Copyright terms: Public domain | W3C validator |