ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12d Unicode version

Theorem sseq12d 3159
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
sseq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
sseq12d  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  D ) )

Proof of Theorem sseq12d
StepHypRef Expression
1 sseq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21sseq1d 3157 . 2  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
3 sseq12d.2 . . 3  |-  ( ph  ->  C  =  D )
43sseq2d 3158 . 2  |-  ( ph  ->  ( B  C_  C  <->  B 
C_  D ) )
52, 4bitrd 187 1  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335    C_ wss 3102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-in 3108  df-ss 3115
This theorem is referenced by:  3sstr3d  3172  3sstr4d  3173  ssdifeq0  3476  relcnvtr  5102  rdgisucinc  6326  oawordriexmid  6410  nnaword  6451  nnawordi  6455  sbthlem2  6895  isbth  6904  infnninf  7056  infnninfOLD  7057  nnnninf  7058  ennnfonelemkh  12113  ennnfonelemrnh  12117  isstruct2im  12160  isstruct2r  12161  ressid2  12209  ressval2  12210  basis1  12405  baspartn  12408  eltg  12412  metss  12854  0nninf  13537  nninff  13538  nnsf  13539  peano4nninf  13540  nninfalllemn  13542  nninfalllem1  13543  nninfself  13548
  Copyright terms: Public domain W3C validator