Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseq1d.1 | |
sseq12d.2 |
Ref | Expression |
---|---|
sseq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . . 3 | |
2 | 1 | sseq1d 3176 | . 2 |
3 | sseq12d.2 | . . 3 | |
4 | 3 | sseq2d 3177 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: 3sstr3d 3191 3sstr4d 3192 ssdifeq0 3497 relcnvtr 5130 rdgisucinc 6364 oawordriexmid 6449 nnaword 6490 nnawordi 6494 sbthlem2 6935 isbth 6944 nninff 7099 infnninf 7100 infnninfOLD 7101 nnnninf 7102 nnnninfeq 7104 nnnninfeq2 7105 nninfwlpoimlemg 7151 ennnfonelemkh 12367 ennnfonelemrnh 12371 isstruct2im 12426 isstruct2r 12427 ressid2 12477 ressval2 12478 basis1 12839 baspartn 12842 eltg 12846 metss 13288 0nninf 14037 nnsf 14038 peano4nninf 14039 nninfalllem1 14041 nninfself 14046 |
Copyright terms: Public domain | W3C validator |