| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| sseq12d.2 |
|
| Ref | Expression |
|---|---|
| sseq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. . 3
| |
| 2 | 1 | sseq1d 3226 |
. 2
|
| 3 | sseq12d.2 |
. . 3
| |
| 4 | 3 | sseq2d 3227 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: 3sstr3d 3241 3sstr4d 3242 ssdifeq0 3547 relcnvtr 5211 rdgisucinc 6484 oawordriexmid 6569 nnaword 6610 nnawordi 6614 sbthlem2 7075 isbth 7084 nninff 7239 nninfninc 7240 infnninf 7241 infnninfOLD 7242 nnnninf 7243 nnnninfeq 7245 nnnninfeq2 7246 nninfwlpoimlemg 7292 swrdval 11124 ennnfonelemkh 12858 ennnfonelemrnh 12862 isstruct2im 12917 isstruct2r 12918 basis1 14594 baspartn 14597 eltg 14599 metss 15041 0nninf 16082 nnsf 16083 peano4nninf 16084 nninfalllem1 16086 nninfself 16091 |
| Copyright terms: Public domain | W3C validator |