![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sseq12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseq12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | sseq1d 3208 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | sseq12d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | sseq2d 3209 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: 3sstr3d 3223 3sstr4d 3224 ssdifeq0 3529 relcnvtr 5185 rdgisucinc 6438 oawordriexmid 6523 nnaword 6564 nnawordi 6568 sbthlem2 7017 isbth 7026 nninff 7181 nninfninc 7182 infnninf 7183 infnninfOLD 7184 nnnninf 7185 nnnninfeq 7187 nnnninfeq2 7188 nninfwlpoimlemg 7234 ennnfonelemkh 12569 ennnfonelemrnh 12573 isstruct2im 12628 isstruct2r 12629 basis1 14215 baspartn 14218 eltg 14220 metss 14662 0nninf 15494 nnsf 15495 peano4nninf 15496 nninfalllem1 15498 nninfself 15503 |
Copyright terms: Public domain | W3C validator |