| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| sseq12d.2 |
|
| Ref | Expression |
|---|---|
| sseq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. . 3
| |
| 2 | 1 | sseq1d 3213 |
. 2
|
| 3 | sseq12d.2 |
. . 3
| |
| 4 | 3 | sseq2d 3214 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: 3sstr3d 3228 3sstr4d 3229 ssdifeq0 3534 relcnvtr 5190 rdgisucinc 6445 oawordriexmid 6530 nnaword 6571 nnawordi 6575 sbthlem2 7026 isbth 7035 nninff 7190 nninfninc 7191 infnninf 7192 infnninfOLD 7193 nnnninf 7194 nnnninfeq 7196 nnnninfeq2 7197 nninfwlpoimlemg 7243 ennnfonelemkh 12640 ennnfonelemrnh 12644 isstruct2im 12699 isstruct2r 12700 basis1 14309 baspartn 14312 eltg 14314 metss 14756 0nninf 15677 nnsf 15678 peano4nninf 15679 nninfalllem1 15681 nninfself 15686 |
| Copyright terms: Public domain | W3C validator |