| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) | 
| Ref | Expression | 
|---|---|
| sseq1d.1 | 
 | 
| sseq12d.2 | 
 | 
| Ref | Expression | 
|---|---|
| sseq12d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq1d.1 | 
. . 3
 | |
| 2 | 1 | sseq1d 3212 | 
. 2
 | 
| 3 | sseq12d.2 | 
. . 3
 | |
| 4 | 3 | sseq2d 3213 | 
. 2
 | 
| 5 | 2, 4 | bitrd 188 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: 3sstr3d 3227 3sstr4d 3228 ssdifeq0 3533 relcnvtr 5189 rdgisucinc 6443 oawordriexmid 6528 nnaword 6569 nnawordi 6573 sbthlem2 7024 isbth 7033 nninff 7188 nninfninc 7189 infnninf 7190 infnninfOLD 7191 nnnninf 7192 nnnninfeq 7194 nnnninfeq2 7195 nninfwlpoimlemg 7241 ennnfonelemkh 12629 ennnfonelemrnh 12633 isstruct2im 12688 isstruct2r 12689 basis1 14283 baspartn 14286 eltg 14288 metss 14730 0nninf 15648 nnsf 15649 peano4nninf 15650 nninfalllem1 15652 nninfself 15657 | 
| Copyright terms: Public domain | W3C validator |