Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq12d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseq1d.1 | |
sseq12d.2 |
Ref | Expression |
---|---|
sseq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . . 3 | |
2 | 1 | sseq1d 3171 | . 2 |
3 | sseq12d.2 | . . 3 | |
4 | 3 | sseq2d 3172 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: 3sstr3d 3186 3sstr4d 3187 ssdifeq0 3491 relcnvtr 5123 rdgisucinc 6353 oawordriexmid 6438 nnaword 6479 nnawordi 6483 sbthlem2 6923 isbth 6932 nninff 7087 infnninf 7088 infnninfOLD 7089 nnnninf 7090 nnnninfeq 7092 nnnninfeq2 7093 ennnfonelemkh 12345 ennnfonelemrnh 12349 isstruct2im 12404 isstruct2r 12405 ressid2 12454 ressval2 12455 basis1 12685 baspartn 12688 eltg 12692 metss 13134 0nninf 13884 nnsf 13885 peano4nninf 13886 nninfalllem1 13888 nninfself 13893 |
Copyright terms: Public domain | W3C validator |