Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssundifim | Unicode version |
Description: A consequence of inclusion in the union of two classes. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
ssundifim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.6r 922 | . . . 4 | |
2 | elun 3268 | . . . . 5 | |
3 | 2 | imbi2i 225 | . . . 4 |
4 | eldif 3130 | . . . . 5 | |
5 | 4 | imbi1i 237 | . . . 4 |
6 | 1, 3, 5 | 3imtr4i 200 | . . 3 |
7 | 6 | alimi 1448 | . 2 |
8 | dfss2 3136 | . 2 | |
9 | dfss2 3136 | . 2 | |
10 | 7, 8, 9 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wal 1346 wcel 2141 cdif 3118 cun 3119 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |