ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifeq0 GIF version

Theorem ssdifeq0 3497
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
Assertion
Ref Expression
ssdifeq0 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)

Proof of Theorem ssdifeq0
StepHypRef Expression
1 inidm 3336 . . 3 (𝐴𝐴) = 𝐴
2 ssdifin0 3496 . . 3 (𝐴 ⊆ (𝐵𝐴) → (𝐴𝐴) = ∅)
31, 2eqtr3id 2217 . 2 (𝐴 ⊆ (𝐵𝐴) → 𝐴 = ∅)
4 0ss 3453 . . 3 ∅ ⊆ (𝐵 ∖ ∅)
5 id 19 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
6 difeq2 3239 . . . 4 (𝐴 = ∅ → (𝐵𝐴) = (𝐵 ∖ ∅))
75, 6sseq12d 3178 . . 3 (𝐴 = ∅ → (𝐴 ⊆ (𝐵𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅)))
84, 7mpbiri 167 . 2 (𝐴 = ∅ → 𝐴 ⊆ (𝐵𝐴))
93, 8impbii 125 1 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  cdif 3118  cin 3120  wss 3121  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator