| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdifeq0 | GIF version | ||
| Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
| Ref | Expression |
|---|---|
| ssdifeq0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 3390 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 2 | ssdifin0 3550 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → (𝐴 ∩ 𝐴) = ∅) | |
| 3 | 1, 2 | eqtr3id 2254 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
| 4 | 0ss 3507 | . . 3 ⊢ ∅ ⊆ (𝐵 ∖ ∅) | |
| 5 | id 19 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 6 | difeq2 3293 | . . . 4 ⊢ (𝐴 = ∅ → (𝐵 ∖ 𝐴) = (𝐵 ∖ ∅)) | |
| 7 | 5, 6 | sseq12d 3232 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅))) |
| 8 | 4, 7 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐵 ∖ 𝐴)) |
| 9 | 3, 8 | impbii 126 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∖ cdif 3171 ∩ cin 3173 ⊆ wss 3174 ∅c0 3468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |