ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifeq0 GIF version

Theorem ssdifeq0 3543
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
Assertion
Ref Expression
ssdifeq0 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)

Proof of Theorem ssdifeq0
StepHypRef Expression
1 inidm 3382 . . 3 (𝐴𝐴) = 𝐴
2 ssdifin0 3542 . . 3 (𝐴 ⊆ (𝐵𝐴) → (𝐴𝐴) = ∅)
31, 2eqtr3id 2252 . 2 (𝐴 ⊆ (𝐵𝐴) → 𝐴 = ∅)
4 0ss 3499 . . 3 ∅ ⊆ (𝐵 ∖ ∅)
5 id 19 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
6 difeq2 3285 . . . 4 (𝐴 = ∅ → (𝐵𝐴) = (𝐵 ∖ ∅))
75, 6sseq12d 3224 . . 3 (𝐴 = ∅ → (𝐴 ⊆ (𝐵𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅)))
84, 7mpbiri 168 . 2 (𝐴 = ∅ → 𝐴 ⊆ (𝐵𝐴))
93, 8impbii 126 1 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  cdif 3163  cin 3165  wss 3166  c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator