ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifeq0 GIF version

Theorem ssdifeq0 3503
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
Assertion
Ref Expression
ssdifeq0 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)

Proof of Theorem ssdifeq0
StepHypRef Expression
1 inidm 3342 . . 3 (𝐴𝐴) = 𝐴
2 ssdifin0 3502 . . 3 (𝐴 ⊆ (𝐵𝐴) → (𝐴𝐴) = ∅)
31, 2eqtr3id 2222 . 2 (𝐴 ⊆ (𝐵𝐴) → 𝐴 = ∅)
4 0ss 3459 . . 3 ∅ ⊆ (𝐵 ∖ ∅)
5 id 19 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
6 difeq2 3245 . . . 4 (𝐴 = ∅ → (𝐵𝐴) = (𝐵 ∖ ∅))
75, 6sseq12d 3184 . . 3 (𝐴 = ∅ → (𝐴 ⊆ (𝐵𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅)))
84, 7mpbiri 168 . 2 (𝐴 = ∅ → 𝐴 ⊆ (𝐵𝐴))
93, 8impbii 126 1 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  cdif 3124  cin 3126  wss 3127  c0 3420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rab 2462  df-v 2737  df-dif 3129  df-in 3133  df-ss 3140  df-nul 3421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator