| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdisj | GIF version | ||
| Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| ssdisj | ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 3490 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) ⊆ ∅ ↔ (𝐵 ∩ 𝐶) = ∅) | |
| 2 | ssrin 3388 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 3 | sstr2 3190 | . . . . 5 ⊢ ((𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶) → ((𝐵 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) |
| 5 | 1, 4 | biimtrrid 153 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) = ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) |
| 6 | 5 | imp 124 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) ⊆ ∅) |
| 7 | ss0 3491 | . 2 ⊢ ((𝐴 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) = ∅) | |
| 8 | 6, 7 | syl 14 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 |
| This theorem is referenced by: djudisj 5097 fimacnvdisj 5442 unfiin 6987 hashunlem 10896 |
| Copyright terms: Public domain | W3C validator |