ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdisj GIF version

Theorem ssdisj 3503
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
ssdisj ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)

Proof of Theorem ssdisj
StepHypRef Expression
1 ss0b 3486 . . . 4 ((𝐵𝐶) ⊆ ∅ ↔ (𝐵𝐶) = ∅)
2 ssrin 3384 . . . . 5 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 sstr2 3186 . . . . 5 ((𝐴𝐶) ⊆ (𝐵𝐶) → ((𝐵𝐶) ⊆ ∅ → (𝐴𝐶) ⊆ ∅))
42, 3syl 14 . . . 4 (𝐴𝐵 → ((𝐵𝐶) ⊆ ∅ → (𝐴𝐶) ⊆ ∅))
51, 4biimtrrid 153 . . 3 (𝐴𝐵 → ((𝐵𝐶) = ∅ → (𝐴𝐶) ⊆ ∅))
65imp 124 . 2 ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) ⊆ ∅)
7 ss0 3487 . 2 ((𝐴𝐶) ⊆ ∅ → (𝐴𝐶) = ∅)
86, 7syl 14 1 ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cin 3152  wss 3153  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by:  djudisj  5093  fimacnvdisj  5438  unfiin  6982  hashunlem  10875
  Copyright terms: Public domain W3C validator