Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssdisj | GIF version |
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
ssdisj | ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3448 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) ⊆ ∅ ↔ (𝐵 ∩ 𝐶) = ∅) | |
2 | ssrin 3347 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
3 | sstr2 3149 | . . . . 5 ⊢ ((𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶) → ((𝐵 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) |
5 | 1, 4 | syl5bir 152 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) = ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) |
6 | 5 | imp 123 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) ⊆ ∅) |
7 | ss0 3449 | . 2 ⊢ ((𝐴 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) = ∅) | |
8 | 6, 7 | syl 14 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 |
This theorem is referenced by: djudisj 5031 fimacnvdisj 5372 unfiin 6891 hashunlem 10717 |
Copyright terms: Public domain | W3C validator |