| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unfiin | Unicode version | ||
| Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.) |
| Ref | Expression |
|---|---|
| unfiin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . 6
| |
| 2 | simpr 110 |
. . . . . 6
| |
| 3 | inss1 3424 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | undiffi 7087 |
. . . . . 6
| |
| 6 | 1, 2, 4, 5 | syl3anc 1271 |
. . . . 5
|
| 7 | simplr 528 |
. . . . . 6
| |
| 8 | inss2 3425 |
. . . . . . 7
| |
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | undiffi 7087 |
. . . . . 6
| |
| 11 | 7, 2, 9, 10 | syl3anc 1271 |
. . . . 5
|
| 12 | 6, 11 | uneq12d 3359 |
. . . 4
|
| 13 | unundi 3365 |
. . . 4
| |
| 14 | 12, 13 | eqtr4di 2280 |
. . 3
|
| 15 | diffifi 7056 |
. . . . . 6
| |
| 16 | 1, 2, 4, 15 | syl3anc 1271 |
. . . . 5
|
| 17 | diffifi 7056 |
. . . . . 6
| |
| 18 | 7, 2, 9, 17 | syl3anc 1271 |
. . . . 5
|
| 19 | incom 3396 |
. . . . . . . . . 10
| |
| 20 | 19 | difeq2i 3319 |
. . . . . . . . 9
|
| 21 | difin 3441 |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqtr3i 2252 |
. . . . . . . 8
|
| 23 | 22 | ineq2i 3402 |
. . . . . . 7
|
| 24 | difss 3330 |
. . . . . . . 8
| |
| 25 | disjdif 3564 |
. . . . . . . 8
| |
| 26 | ssdisj 3548 |
. . . . . . . 8
| |
| 27 | 24, 25, 26 | mp2an 426 |
. . . . . . 7
|
| 28 | 23, 27 | eqtri 2250 |
. . . . . 6
|
| 29 | 28 | a1i 9 |
. . . . 5
|
| 30 | unfidisj 7084 |
. . . . 5
| |
| 31 | 16, 18, 29, 30 | syl3anc 1271 |
. . . 4
|
| 32 | difundir 3457 |
. . . . . . 7
| |
| 33 | 32 | ineq2i 3402 |
. . . . . 6
|
| 34 | disjdif 3564 |
. . . . . 6
| |
| 35 | 33, 34 | eqtr3i 2252 |
. . . . 5
|
| 36 | 35 | a1i 9 |
. . . 4
|
| 37 | unfidisj 7084 |
. . . 4
| |
| 38 | 2, 31, 36, 37 | syl3anc 1271 |
. . 3
|
| 39 | 14, 38 | eqeltrd 2306 |
. 2
|
| 40 | 39 | 3impa 1218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6562 df-er 6680 df-en 6888 df-fin 6890 |
| This theorem is referenced by: 4sqlem11 12924 |
| Copyright terms: Public domain | W3C validator |