| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unfiin | Unicode version | ||
| Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.) |
| Ref | Expression |
|---|---|
| unfiin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . 6
| |
| 2 | simpr 110 |
. . . . . 6
| |
| 3 | inss1 3384 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | undiffi 6995 |
. . . . . 6
| |
| 6 | 1, 2, 4, 5 | syl3anc 1249 |
. . . . 5
|
| 7 | simplr 528 |
. . . . . 6
| |
| 8 | inss2 3385 |
. . . . . . 7
| |
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | undiffi 6995 |
. . . . . 6
| |
| 11 | 7, 2, 9, 10 | syl3anc 1249 |
. . . . 5
|
| 12 | 6, 11 | uneq12d 3319 |
. . . 4
|
| 13 | unundi 3325 |
. . . 4
| |
| 14 | 12, 13 | eqtr4di 2247 |
. . 3
|
| 15 | diffifi 6964 |
. . . . . 6
| |
| 16 | 1, 2, 4, 15 | syl3anc 1249 |
. . . . 5
|
| 17 | diffifi 6964 |
. . . . . 6
| |
| 18 | 7, 2, 9, 17 | syl3anc 1249 |
. . . . 5
|
| 19 | incom 3356 |
. . . . . . . . . 10
| |
| 20 | 19 | difeq2i 3279 |
. . . . . . . . 9
|
| 21 | difin 3401 |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqtr3i 2219 |
. . . . . . . 8
|
| 23 | 22 | ineq2i 3362 |
. . . . . . 7
|
| 24 | difss 3290 |
. . . . . . . 8
| |
| 25 | disjdif 3524 |
. . . . . . . 8
| |
| 26 | ssdisj 3508 |
. . . . . . . 8
| |
| 27 | 24, 25, 26 | mp2an 426 |
. . . . . . 7
|
| 28 | 23, 27 | eqtri 2217 |
. . . . . 6
|
| 29 | 28 | a1i 9 |
. . . . 5
|
| 30 | unfidisj 6992 |
. . . . 5
| |
| 31 | 16, 18, 29, 30 | syl3anc 1249 |
. . . 4
|
| 32 | difundir 3417 |
. . . . . . 7
| |
| 33 | 32 | ineq2i 3362 |
. . . . . 6
|
| 34 | disjdif 3524 |
. . . . . 6
| |
| 35 | 33, 34 | eqtr3i 2219 |
. . . . 5
|
| 36 | 35 | a1i 9 |
. . . 4
|
| 37 | unfidisj 6992 |
. . . 4
| |
| 38 | 2, 31, 36, 37 | syl3anc 1249 |
. . 3
|
| 39 | 14, 38 | eqeltrd 2273 |
. 2
|
| 40 | 39 | 3impa 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 |
| This theorem is referenced by: 4sqlem11 12595 |
| Copyright terms: Public domain | W3C validator |