Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unfiin | Unicode version |
Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.) |
Ref | Expression |
---|---|
unfiin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . . . 6 | |
2 | simpr 109 | . . . . . 6 | |
3 | inss1 3342 | . . . . . . 7 | |
4 | 3 | a1i 9 | . . . . . 6 |
5 | undiffi 6890 | . . . . . 6 | |
6 | 1, 2, 4, 5 | syl3anc 1228 | . . . . 5 |
7 | simplr 520 | . . . . . 6 | |
8 | inss2 3343 | . . . . . . 7 | |
9 | 8 | a1i 9 | . . . . . 6 |
10 | undiffi 6890 | . . . . . 6 | |
11 | 7, 2, 9, 10 | syl3anc 1228 | . . . . 5 |
12 | 6, 11 | uneq12d 3277 | . . . 4 |
13 | unundi 3283 | . . . 4 | |
14 | 12, 13 | eqtr4di 2217 | . . 3 |
15 | diffifi 6860 | . . . . . 6 | |
16 | 1, 2, 4, 15 | syl3anc 1228 | . . . . 5 |
17 | diffifi 6860 | . . . . . 6 | |
18 | 7, 2, 9, 17 | syl3anc 1228 | . . . . 5 |
19 | incom 3314 | . . . . . . . . . 10 | |
20 | 19 | difeq2i 3237 | . . . . . . . . 9 |
21 | difin 3359 | . . . . . . . . 9 | |
22 | 20, 21 | eqtr3i 2188 | . . . . . . . 8 |
23 | 22 | ineq2i 3320 | . . . . . . 7 |
24 | difss 3248 | . . . . . . . 8 | |
25 | disjdif 3481 | . . . . . . . 8 | |
26 | ssdisj 3465 | . . . . . . . 8 | |
27 | 24, 25, 26 | mp2an 423 | . . . . . . 7 |
28 | 23, 27 | eqtri 2186 | . . . . . 6 |
29 | 28 | a1i 9 | . . . . 5 |
30 | unfidisj 6887 | . . . . 5 | |
31 | 16, 18, 29, 30 | syl3anc 1228 | . . . 4 |
32 | difundir 3375 | . . . . . . 7 | |
33 | 32 | ineq2i 3320 | . . . . . 6 |
34 | disjdif 3481 | . . . . . 6 | |
35 | 33, 34 | eqtr3i 2188 | . . . . 5 |
36 | 35 | a1i 9 | . . . 4 |
37 | unfidisj 6887 | . . . 4 | |
38 | 2, 31, 36, 37 | syl3anc 1228 | . . 3 |
39 | 14, 38 | eqeltrd 2243 | . 2 |
40 | 39 | 3impa 1184 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |