ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiin Unicode version

Theorem unfiin 6987
Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
Assertion
Ref Expression
unfiin  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )

Proof of Theorem unfiin
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  e.  Fin )
2 simpr 110 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  e.  Fin )
3 inss1 3383 . . . . . . 7  |-  ( A  i^i  B )  C_  A
43a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  A )
5 undiffi 6986 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \  ( A  i^i  B ) ) ) )
61, 2, 4, 5syl3anc 1249 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) ) )
7 simplr 528 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  e.  Fin )
8 inss2 3384 . . . . . . 7  |-  ( A  i^i  B )  C_  B
98a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  B )
10 undiffi 6986 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \  ( A  i^i  B ) ) ) )
117, 2, 9, 10syl3anc 1249 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \ 
( A  i^i  B
) ) ) )
126, 11uneq12d 3318 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( ( A  i^i  B
)  u.  ( A 
\  ( A  i^i  B ) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) ) )
13 unundi 3324 . . . 4  |-  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  ( ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) )
1412, 13eqtr4di 2247 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) ) )
15 diffifi 6955 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
161, 2, 4, 15syl3anc 1249 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
17 diffifi 6955 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
187, 2, 9, 17syl3anc 1249 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
19 incom 3355 . . . . . . . . . 10  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2019difeq2i 3278 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  ( A  i^i  B ) )
21 difin 3400 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
2220, 21eqtr3i 2219 . . . . . . . 8  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
2322ineq2i 3361 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  A ) )
24 difss 3289 . . . . . . . 8  |-  ( A 
\  ( A  i^i  B ) )  C_  A
25 disjdif 3523 . . . . . . . 8  |-  ( A  i^i  ( B  \  A ) )  =  (/)
26 ssdisj 3507 . . . . . . . 8  |-  ( ( ( A  \  ( A  i^i  B ) ) 
C_  A  /\  ( A  i^i  ( B  \  A ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/) )
2724, 25, 26mp2an 426 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/)
2823, 27eqtri 2217 . . . . . 6  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  (/)
2928a1i 9 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )
30 unfidisj 6983 . . . . 5  |-  ( ( ( A  \  ( A  i^i  B ) )  e.  Fin  /\  ( B  \  ( A  i^i  B ) )  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  e. 
Fin )
3116, 18, 29, 30syl3anc 1249 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin )
32 difundir 3416 . . . . . . 7  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
3332ineq2i 3361 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )
34 disjdif 3523 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  (/)
3533, 34eqtr3i 2219 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/)
3635a1i 9 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  =  (/) )
37 unfidisj 6983 . . . 4  |-  ( ( ( A  i^i  B
)  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin  /\  ( ( A  i^i  B )  i^i  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/) )  ->  (
( A  i^i  B
)  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
382, 31, 36, 37syl3anc 1249 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
3914, 38eqeltrd 2273 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )
40393impa 1196 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    \ cdif 3154    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3450   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  4sqlem11  12570
  Copyright terms: Public domain W3C validator