ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiin Unicode version

Theorem unfiin 6822
Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
Assertion
Ref Expression
unfiin  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )

Proof of Theorem unfiin
StepHypRef Expression
1 simpll 519 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  e.  Fin )
2 simpr 109 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  e.  Fin )
3 inss1 3301 . . . . . . 7  |-  ( A  i^i  B )  C_  A
43a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  A )
5 undiffi 6821 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \  ( A  i^i  B ) ) ) )
61, 2, 4, 5syl3anc 1217 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) ) )
7 simplr 520 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  e.  Fin )
8 inss2 3302 . . . . . . 7  |-  ( A  i^i  B )  C_  B
98a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  B )
10 undiffi 6821 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \  ( A  i^i  B ) ) ) )
117, 2, 9, 10syl3anc 1217 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \ 
( A  i^i  B
) ) ) )
126, 11uneq12d 3236 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( ( A  i^i  B
)  u.  ( A 
\  ( A  i^i  B ) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) ) )
13 unundi 3242 . . . 4  |-  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  ( ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) )
1412, 13eqtr4di 2191 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) ) )
15 diffifi 6796 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
161, 2, 4, 15syl3anc 1217 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
17 diffifi 6796 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
187, 2, 9, 17syl3anc 1217 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
19 incom 3273 . . . . . . . . . 10  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2019difeq2i 3196 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  ( A  i^i  B ) )
21 difin 3318 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
2220, 21eqtr3i 2163 . . . . . . . 8  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
2322ineq2i 3279 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  A ) )
24 difss 3207 . . . . . . . 8  |-  ( A 
\  ( A  i^i  B ) )  C_  A
25 disjdif 3440 . . . . . . . 8  |-  ( A  i^i  ( B  \  A ) )  =  (/)
26 ssdisj 3424 . . . . . . . 8  |-  ( ( ( A  \  ( A  i^i  B ) ) 
C_  A  /\  ( A  i^i  ( B  \  A ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/) )
2724, 25, 26mp2an 423 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/)
2823, 27eqtri 2161 . . . . . 6  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  (/)
2928a1i 9 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )
30 unfidisj 6818 . . . . 5  |-  ( ( ( A  \  ( A  i^i  B ) )  e.  Fin  /\  ( B  \  ( A  i^i  B ) )  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  e. 
Fin )
3116, 18, 29, 30syl3anc 1217 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin )
32 difundir 3334 . . . . . . 7  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
3332ineq2i 3279 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )
34 disjdif 3440 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  (/)
3533, 34eqtr3i 2163 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/)
3635a1i 9 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  =  (/) )
37 unfidisj 6818 . . . 4  |-  ( ( ( A  i^i  B
)  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin  /\  ( ( A  i^i  B )  i^i  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/) )  ->  (
( A  i^i  B
)  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
382, 31, 36, 37syl3anc 1217 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
3914, 38eqeltrd 2217 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )
40393impa 1177 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481    \ cdif 3073    u. cun 3074    i^i cin 3075    C_ wss 3076   (/)c0 3368   Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-er 6437  df-en 6643  df-fin 6645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator