ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiin Unicode version

Theorem unfiin 6938
Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
Assertion
Ref Expression
unfiin  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )

Proof of Theorem unfiin
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  e.  Fin )
2 simpr 110 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  e.  Fin )
3 inss1 3367 . . . . . . 7  |-  ( A  i^i  B )  C_  A
43a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  A )
5 undiffi 6937 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \  ( A  i^i  B ) ) ) )
61, 2, 4, 5syl3anc 1248 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) ) )
7 simplr 528 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  e.  Fin )
8 inss2 3368 . . . . . . 7  |-  ( A  i^i  B )  C_  B
98a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  B )
10 undiffi 6937 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \  ( A  i^i  B ) ) ) )
117, 2, 9, 10syl3anc 1248 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \ 
( A  i^i  B
) ) ) )
126, 11uneq12d 3302 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( ( A  i^i  B
)  u.  ( A 
\  ( A  i^i  B ) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) ) )
13 unundi 3308 . . . 4  |-  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  ( ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) )
1412, 13eqtr4di 2238 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) ) )
15 diffifi 6907 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
161, 2, 4, 15syl3anc 1248 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
17 diffifi 6907 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
187, 2, 9, 17syl3anc 1248 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
19 incom 3339 . . . . . . . . . 10  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2019difeq2i 3262 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  ( A  i^i  B ) )
21 difin 3384 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
2220, 21eqtr3i 2210 . . . . . . . 8  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
2322ineq2i 3345 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  A ) )
24 difss 3273 . . . . . . . 8  |-  ( A 
\  ( A  i^i  B ) )  C_  A
25 disjdif 3507 . . . . . . . 8  |-  ( A  i^i  ( B  \  A ) )  =  (/)
26 ssdisj 3491 . . . . . . . 8  |-  ( ( ( A  \  ( A  i^i  B ) ) 
C_  A  /\  ( A  i^i  ( B  \  A ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/) )
2724, 25, 26mp2an 426 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/)
2823, 27eqtri 2208 . . . . . 6  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  (/)
2928a1i 9 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )
30 unfidisj 6934 . . . . 5  |-  ( ( ( A  \  ( A  i^i  B ) )  e.  Fin  /\  ( B  \  ( A  i^i  B ) )  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  e. 
Fin )
3116, 18, 29, 30syl3anc 1248 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin )
32 difundir 3400 . . . . . . 7  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
3332ineq2i 3345 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )
34 disjdif 3507 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  (/)
3533, 34eqtr3i 2210 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/)
3635a1i 9 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  =  (/) )
37 unfidisj 6934 . . . 4  |-  ( ( ( A  i^i  B
)  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin  /\  ( ( A  i^i  B )  i^i  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/) )  ->  (
( A  i^i  B
)  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
382, 31, 36, 37syl3anc 1248 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
3914, 38eqeltrd 2264 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )
40393impa 1195 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158    \ cdif 3138    u. cun 3139    i^i cin 3140    C_ wss 3141   (/)c0 3434   Fincfn 6753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1o 6430  df-er 6548  df-en 6754  df-fin 6756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator