ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiin Unicode version

Theorem unfiin 6919
Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
Assertion
Ref Expression
unfiin  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )

Proof of Theorem unfiin
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  e.  Fin )
2 simpr 110 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  e.  Fin )
3 inss1 3355 . . . . . . 7  |-  ( A  i^i  B )  C_  A
43a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  A )
5 undiffi 6918 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \  ( A  i^i  B ) ) ) )
61, 2, 4, 5syl3anc 1238 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) ) )
7 simplr 528 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  e.  Fin )
8 inss2 3356 . . . . . . 7  |-  ( A  i^i  B )  C_  B
98a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  B )
10 undiffi 6918 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \  ( A  i^i  B ) ) ) )
117, 2, 9, 10syl3anc 1238 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \ 
( A  i^i  B
) ) ) )
126, 11uneq12d 3290 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( ( A  i^i  B
)  u.  ( A 
\  ( A  i^i  B ) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) ) )
13 unundi 3296 . . . 4  |-  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  ( ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) )
1412, 13eqtr4di 2228 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) ) )
15 diffifi 6888 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
161, 2, 4, 15syl3anc 1238 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
17 diffifi 6888 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
187, 2, 9, 17syl3anc 1238 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
19 incom 3327 . . . . . . . . . 10  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2019difeq2i 3250 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  ( A  i^i  B ) )
21 difin 3372 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
2220, 21eqtr3i 2200 . . . . . . . 8  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
2322ineq2i 3333 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  A ) )
24 difss 3261 . . . . . . . 8  |-  ( A 
\  ( A  i^i  B ) )  C_  A
25 disjdif 3495 . . . . . . . 8  |-  ( A  i^i  ( B  \  A ) )  =  (/)
26 ssdisj 3479 . . . . . . . 8  |-  ( ( ( A  \  ( A  i^i  B ) ) 
C_  A  /\  ( A  i^i  ( B  \  A ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/) )
2724, 25, 26mp2an 426 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/)
2823, 27eqtri 2198 . . . . . 6  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  (/)
2928a1i 9 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )
30 unfidisj 6915 . . . . 5  |-  ( ( ( A  \  ( A  i^i  B ) )  e.  Fin  /\  ( B  \  ( A  i^i  B ) )  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  e. 
Fin )
3116, 18, 29, 30syl3anc 1238 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin )
32 difundir 3388 . . . . . . 7  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
3332ineq2i 3333 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )
34 disjdif 3495 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  (/)
3533, 34eqtr3i 2200 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/)
3635a1i 9 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  =  (/) )
37 unfidisj 6915 . . . 4  |-  ( ( ( A  i^i  B
)  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin  /\  ( ( A  i^i  B )  i^i  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/) )  ->  (
( A  i^i  B
)  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
382, 31, 36, 37syl3anc 1238 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
3914, 38eqeltrd 2254 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )
40393impa 1194 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    \ cdif 3126    u. cun 3127    i^i cin 3128    C_ wss 3129   (/)c0 3422   Fincfn 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1o 6411  df-er 6529  df-en 6735  df-fin 6737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator