ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid Unicode version

Theorem sseqtrrid 3248
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1  |-  B  C_  A
sseqtrrid.2  |-  ( ph  ->  C  =  A )
Assertion
Ref Expression
sseqtrrid  |-  ( ph  ->  B  C_  C )

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3  |-  B  C_  A
21a1i 9 . 2  |-  ( ph  ->  B  C_  A )
3 sseqtrrid.2 . 2  |-  ( ph  ->  C  =  A )
42, 3sseqtrrd 3236 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  resdif  5556  fimacnv  5722  tfrlem5  6413  fsumsplit  11793  fprodsplitdc  11982  phimullem  12622  ennnfonelemss  12856  prdssca  13182  prdsbas  13183  prdsplusg  13184  prdsmulr  13185  lspssid  14237  istopon  14560  sscls  14667  mopnfss  14994  plyaddlem1  15294  plymullem1  15295  lgsquadlem2  15630
  Copyright terms: Public domain W3C validator