ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid Unicode version

Theorem sseqtrrid 3198
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1  |-  B  C_  A
sseqtrrid.2  |-  ( ph  ->  C  =  A )
Assertion
Ref Expression
sseqtrrid  |-  ( ph  ->  B  C_  C )

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3  |-  B  C_  A
21a1i 9 . 2  |-  ( ph  ->  B  C_  A )
3 sseqtrrid.2 . 2  |-  ( ph  ->  C  =  A )
42, 3sseqtrrd 3186 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  resdif  5464  fimacnv  5625  tfrlem5  6293  fsumsplit  11370  fprodsplitdc  11559  phimullem  12179  ennnfonelemss  12365  istopon  12805  sscls  12914  mopnfss  13241
  Copyright terms: Public domain W3C validator