| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrrid.1 |
|
| sseqtrrid.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sseqtrrid.2 |
. 2
| |
| 4 | 2, 3 | sseqtrrd 3231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: resdif 5543 fimacnv 5708 tfrlem5 6399 fsumsplit 11660 fprodsplitdc 11849 phimullem 12489 ennnfonelemss 12723 prdssca 13049 prdsbas 13050 prdsplusg 13051 prdsmulr 13052 lspssid 14104 istopon 14427 sscls 14534 mopnfss 14861 plyaddlem1 15161 plymullem1 15162 lgsquadlem2 15497 |
| Copyright terms: Public domain | W3C validator |