| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrrid.1 |
|
| sseqtrrid.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sseqtrrid.2 |
. 2
| |
| 4 | 2, 3 | sseqtrrd 3236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: resdif 5556 fimacnv 5722 tfrlem5 6413 fsumsplit 11793 fprodsplitdc 11982 phimullem 12622 ennnfonelemss 12856 prdssca 13182 prdsbas 13183 prdsplusg 13184 prdsmulr 13185 lspssid 14237 istopon 14560 sscls 14667 mopnfss 14994 plyaddlem1 15294 plymullem1 15295 lgsquadlem2 15630 |
| Copyright terms: Public domain | W3C validator |