ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid Unicode version

Theorem sseqtrrid 3193
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1  |-  B  C_  A
sseqtrrid.2  |-  ( ph  ->  C  =  A )
Assertion
Ref Expression
sseqtrrid  |-  ( ph  ->  B  C_  C )

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3  |-  B  C_  A
21a1i 9 . 2  |-  ( ph  ->  B  C_  A )
3 sseqtrrid.2 . 2  |-  ( ph  ->  C  =  A )
42, 3sseqtrrd 3181 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  resdif  5454  fimacnv  5614  tfrlem5  6282  fsumsplit  11348  fprodsplitdc  11537  phimullem  12157  ennnfonelemss  12343  istopon  12651  sscls  12760  mopnfss  13087
  Copyright terms: Public domain W3C validator