Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid Unicode version

Theorem sseqtrrid 3179
 Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1
sseqtrrid.2
Assertion
Ref Expression
sseqtrrid

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3
21a1i 9 . 2
3 sseqtrrid.2 . 2
42, 3sseqtrrd 3167 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1335   wss 3102 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-in 3108  df-ss 3115 This theorem is referenced by:  resdif  5435  fimacnv  5595  tfrlem5  6258  fsumsplit  11297  fprodsplitdc  11486  phimullem  12088  ennnfonelemss  12122  istopon  12382  sscls  12491  mopnfss  12818
 Copyright terms: Public domain W3C validator