| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrrid.1 |
|
| sseqtrrid.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sseqtrrid.2 |
. 2
| |
| 4 | 2, 3 | sseqtrrd 3263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: resdif 5593 fimacnv 5763 tfrlem5 6458 fsumsplit 11913 fprodsplitdc 12102 phimullem 12742 ennnfonelemss 12976 prdssca 13303 prdsbas 13304 prdsplusg 13305 prdsmulr 13306 lspssid 14358 istopon 14681 sscls 14788 mopnfss 15115 plyaddlem1 15415 plymullem1 15416 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |