Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrid | Unicode version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sseqtrrid.1 | |
sseqtrrid.2 |
Ref | Expression |
---|---|
sseqtrrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrid.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | sseqtrrid.2 | . 2 | |
4 | 2, 3 | sseqtrrd 3167 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: resdif 5435 fimacnv 5595 tfrlem5 6258 fsumsplit 11297 fprodsplitdc 11486 phimullem 12088 ennnfonelemss 12122 istopon 12382 sscls 12491 mopnfss 12818 |
Copyright terms: Public domain | W3C validator |