ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid Unicode version

Theorem sseqtrrid 3208
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1  |-  B  C_  A
sseqtrrid.2  |-  ( ph  ->  C  =  A )
Assertion
Ref Expression
sseqtrrid  |-  ( ph  ->  B  C_  C )

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3  |-  B  C_  A
21a1i 9 . 2  |-  ( ph  ->  B  C_  A )
3 sseqtrrid.2 . 2  |-  ( ph  ->  C  =  A )
42, 3sseqtrrd 3196 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  resdif  5485  fimacnv  5647  tfrlem5  6317  fsumsplit  11417  fprodsplitdc  11606  phimullem  12227  ennnfonelemss  12413  istopon  13552  sscls  13659  mopnfss  13986
  Copyright terms: Public domain W3C validator