ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid Unicode version

Theorem sseqtrrid 3179
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1  |-  B  C_  A
sseqtrrid.2  |-  ( ph  ->  C  =  A )
Assertion
Ref Expression
sseqtrrid  |-  ( ph  ->  B  C_  C )

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3  |-  B  C_  A
21a1i 9 . 2  |-  ( ph  ->  B  C_  A )
3 sseqtrrid.2 . 2  |-  ( ph  ->  C  =  A )
42, 3sseqtrrd 3167 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    C_ wss 3102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-in 3108  df-ss 3115
This theorem is referenced by:  resdif  5435  fimacnv  5595  tfrlem5  6258  fsumsplit  11297  fprodsplitdc  11486  phimullem  12088  ennnfonelemss  12122  istopon  12382  sscls  12491  mopnfss  12818
  Copyright terms: Public domain W3C validator