| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrrid.1 |
|
| sseqtrrid.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | sseqtrrid.2 |
. 2
| |
| 4 | 2, 3 | sseqtrrd 3223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: resdif 5529 fimacnv 5694 tfrlem5 6381 fsumsplit 11589 fprodsplitdc 11778 phimullem 12418 ennnfonelemss 12652 prdssca 12977 prdsbas 12978 prdsplusg 12979 prdsmulr 12980 lspssid 14032 istopon 14333 sscls 14440 mopnfss 14767 plyaddlem1 15067 plymullem1 15068 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |