ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid GIF version

Theorem sseqtrrid 3204
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1 𝐵𝐴
sseqtrrid.2 (𝜑𝐶 = 𝐴)
Assertion
Ref Expression
sseqtrrid (𝜑𝐵𝐶)

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3 𝐵𝐴
21a1i 9 . 2 (𝜑𝐵𝐴)
3 sseqtrrid.2 . 2 (𝜑𝐶 = 𝐴)
42, 3sseqtrrd 3192 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140
This theorem is referenced by:  resdif  5475  fimacnv  5637  tfrlem5  6305  fsumsplit  11383  fprodsplitdc  11572  phimullem  12192  ennnfonelemss  12378  istopon  13082  sscls  13191  mopnfss  13518
  Copyright terms: Public domain W3C validator