| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| sseqtrrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrid.1 | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 3 | sseqtrrid.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 4 | 2, 3 | sseqtrrd 3222 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: resdif 5526 fimacnv 5691 tfrlem5 6372 fsumsplit 11572 fprodsplitdc 11761 phimullem 12393 ennnfonelemss 12627 lspssid 13956 istopon 14249 sscls 14356 mopnfss 14683 plyaddlem1 14983 plymullem1 14984 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |