ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid GIF version

Theorem sseqtrrid 3275
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1 𝐵𝐴
sseqtrrid.2 (𝜑𝐶 = 𝐴)
Assertion
Ref Expression
sseqtrrid (𝜑𝐵𝐶)

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3 𝐵𝐴
21a1i 9 . 2 (𝜑𝐵𝐴)
3 sseqtrrid.2 . 2 (𝜑𝐶 = 𝐴)
42, 3sseqtrrd 3263 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  resdif  5596  fimacnv  5766  tfrlem5  6466  fsumsplit  11926  fprodsplitdc  12115  phimullem  12755  ennnfonelemss  12989  prdssca  13316  prdsbas  13317  prdsplusg  13318  prdsmulr  13319  lspssid  14372  istopon  14695  sscls  14802  mopnfss  15129  plyaddlem1  15429  plymullem1  15430  lgsquadlem2  15765
  Copyright terms: Public domain W3C validator