| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| sseqtrrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrid.1 | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 3 | sseqtrrid.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 4 | 2, 3 | sseqtrrd 3223 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: resdif 5529 fimacnv 5694 tfrlem5 6381 fsumsplit 11591 fprodsplitdc 11780 phimullem 12420 ennnfonelemss 12654 prdssca 12979 prdsbas 12980 prdsplusg 12981 prdsmulr 12982 lspssid 14034 istopon 14335 sscls 14442 mopnfss 14769 plyaddlem1 15069 plymullem1 15070 lgsquadlem2 15405 |
| Copyright terms: Public domain | W3C validator |