Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sseqtrrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
sseqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
Ref | Expression |
---|---|
sseqtrrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrid.1 | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
3 | sseqtrrid.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
4 | 2, 3 | sseqtrrd 3181 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: resdif 5454 fimacnv 5614 tfrlem5 6282 fsumsplit 11348 fprodsplitdc 11537 phimullem 12157 ennnfonelemss 12343 istopon 12651 sscls 12760 mopnfss 13087 |
Copyright terms: Public domain | W3C validator |