![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sseqtrrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
sseqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
Ref | Expression |
---|---|
sseqtrrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrid.1 | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
3 | sseqtrrid.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
4 | 2, 3 | sseqtrrd 3219 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: resdif 5523 fimacnv 5688 tfrlem5 6369 fsumsplit 11553 fprodsplitdc 11742 phimullem 12366 ennnfonelemss 12570 lspssid 13899 istopon 14192 sscls 14299 mopnfss 14626 plyaddlem1 14926 plymullem1 14927 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |