| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| sseqtrrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrid.1 | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 3 | sseqtrrid.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 4 | 2, 3 | sseqtrrd 3233 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: resdif 5551 fimacnv 5716 tfrlem5 6407 fsumsplit 11762 fprodsplitdc 11951 phimullem 12591 ennnfonelemss 12825 prdssca 13151 prdsbas 13152 prdsplusg 13153 prdsmulr 13154 lspssid 14206 istopon 14529 sscls 14636 mopnfss 14963 plyaddlem1 15263 plymullem1 15264 lgsquadlem2 15599 |
| Copyright terms: Public domain | W3C validator |