ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrid GIF version

Theorem sseqtrrid 3230
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrrid.1 𝐵𝐴
sseqtrrid.2 (𝜑𝐶 = 𝐴)
Assertion
Ref Expression
sseqtrrid (𝜑𝐵𝐶)

Proof of Theorem sseqtrrid
StepHypRef Expression
1 sseqtrrid.1 . . 3 𝐵𝐴
21a1i 9 . 2 (𝜑𝐵𝐴)
3 sseqtrrid.2 . 2 (𝜑𝐶 = 𝐴)
42, 3sseqtrrd 3218 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  resdif  5522  fimacnv  5687  tfrlem5  6367  fsumsplit  11550  fprodsplitdc  11739  phimullem  12363  ennnfonelemss  12567  lspssid  13896  istopon  14181  sscls  14288  mopnfss  14615  plyaddlem1  14893  plymullem1  14894
  Copyright terms: Public domain W3C validator