ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemss Unicode version

Theorem ennnfonelemss 12394
Description: Lemma for ennnfone 12409. We only add elements to  H as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemss.p  |-  ( ph  ->  P  e.  NN0 )
Assertion
Ref Expression
ennnfonelemss  |-  ( ph  ->  ( H `  P
)  C_  ( H `  ( P  +  1 ) ) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    x, H, y    j, J    x, N, y    P, j, x, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( k, n)    F( j, k, n)    G( x, y, k, n)    H( j, k, n)    J( x, y, k, n)    N( j,
k, n)

Proof of Theorem ennnfonelemss
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . 6  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . 6  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . 6  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . 6  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . 6  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . 6  |-  H  =  seq 0 ( G ,  J )
8 ennnfonelemss.p . . . . . 6  |-  ( ph  ->  P  e.  NN0 )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemp1 12390 . . . . 5  |-  ( ph  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
109adantr 276 . . . 4  |-  ( (
ph  /\  ( F `  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) )  ->  ( H `  ( P  +  1 ) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
11 simpr 110 . . . . 5  |-  ( (
ph  /\  ( F `  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) )  ->  ( F `  ( `' N `  P )
)  e.  ( F
" ( `' N `  P ) ) )
1211iftrued 3541 . . . 4  |-  ( (
ph  /\  ( F `  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) )  ->  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  =  ( H `  P ) )
1310, 12eqtrd 2210 . . 3  |-  ( (
ph  /\  ( F `  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) )  ->  ( H `  ( P  +  1 ) )  =  ( H `  P ) )
14 eqimss2 3210 . . 3  |-  ( ( H `  ( P  +  1 ) )  =  ( H `  P )  ->  ( H `  P )  C_  ( H `  ( P  +  1 ) ) )
1513, 14syl 14 . 2  |-  ( (
ph  /\  ( F `  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) )  ->  ( H `  P )  C_  ( H `  ( P  +  1 ) ) )
16 ssun1 3298 . . 3  |-  ( H `
 P )  C_  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } )
179adantr 276 . . . 4  |-  ( (
ph  /\  -.  ( F `  ( `' N `  P )
)  e.  ( F
" ( `' N `  P ) ) )  ->  ( H `  ( P  +  1
) )  =  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) ) )
18 simpr 110 . . . . 5  |-  ( (
ph  /\  -.  ( F `  ( `' N `  P )
)  e.  ( F
" ( `' N `  P ) ) )  ->  -.  ( F `  ( `' N `  P ) )  e.  ( F " ( `' N `  P ) ) )
1918iffalsed 3544 . . . 4  |-  ( (
ph  /\  -.  ( F `  ( `' N `  P )
)  e.  ( F
" ( `' N `  P ) ) )  ->  if ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ,  ( H `  P
) ,  ( ( H `  P )  u.  { <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )  =  ( ( H `
 P )  u. 
{ <. dom  ( H `  P ) ,  ( F `  ( `' N `  P ) ) >. } ) )
2017, 19eqtrd 2210 . . 3  |-  ( (
ph  /\  -.  ( F `  ( `' N `  P )
)  e.  ( F
" ( `' N `  P ) ) )  ->  ( H `  ( P  +  1
) )  =  ( ( H `  P
)  u.  { <. dom  ( H `  P
) ,  ( F `
 ( `' N `  P ) ) >. } ) )
2116, 20sseqtrrid 3206 . 2  |-  ( (
ph  /\  -.  ( F `  ( `' N `  P )
)  e.  ( F
" ( `' N `  P ) ) )  ->  ( H `  P )  C_  ( H `  ( P  +  1 ) ) )
225frechashgf1o 10414 . . . . . . 7  |-  N : om
-1-1-onto-> NN0
23 f1ocnv 5470 . . . . . . 7  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
24 f1of 5457 . . . . . . 7  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
2522, 23, 24mp2b 8 . . . . . 6  |-  `' N : NN0 --> om
2625a1i 9 . . . . 5  |-  ( ph  ->  `' N : NN0 --> om )
2726, 8ffvelcdmd 5648 . . . 4  |-  ( ph  ->  ( `' N `  P )  e.  om )
281, 2, 27ennnfonelemdc 12383 . . 3  |-  ( ph  -> DECID  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) )
29 exmiddc 836 . . 3  |-  (DECID  ( F `
 ( `' N `  P ) )  e.  ( F " ( `' N `  P ) )  ->  ( ( F `  ( `' N `  P )
)  e.  ( F
" ( `' N `  P ) )  \/ 
-.  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ) )
3028, 29syl 14 . 2  |-  ( ph  ->  ( ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) )  \/ 
-.  ( F `  ( `' N `  P ) )  e.  ( F
" ( `' N `  P ) ) ) )
3115, 21, 30mpjaodan 798 1  |-  ( ph  ->  ( H `  P
)  C_  ( H `  ( P  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456    u. cun 3127    C_ wss 3129   (/)c0 3422   ifcif 3534   {csn 3591   <.cop 3594    |-> cmpt 4061   suc csuc 4362   omcom 4586   `'ccnv 4622   dom cdm 4623   "cima 4626   -->wf 5208   -onto->wfo 5210   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869    e. cmpo 5871  freccfrec 6385    ^pm cpm 6643   0cc0 7802   1c1 7803    + caddc 7805    - cmin 8118   NN0cn0 9165   ZZcz 9242    seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pm 6645  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432
This theorem is referenced by:  ennnfoneleminc  12395
  Copyright terms: Public domain W3C validator