| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > istopon | Unicode version | ||
| Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istopon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funtopon 14599 |
. . . . 5
| |
| 2 | funrel 5307 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | relelfvdm 5631 |
. . . 4
| |
| 5 | 3, 4 | mpan 424 |
. . 3
|
| 6 | 5 | elexd 2790 |
. 2
|
| 7 | uniexg 4504 |
. . . 4
| |
| 8 | eleq1 2270 |
. . . 4
| |
| 9 | 7, 8 | syl5ibrcom 157 |
. . 3
|
| 10 | 9 | imp 124 |
. 2
|
| 11 | eqeq1 2214 |
. . . . . 6
| |
| 12 | 11 | rabbidv 2765 |
. . . . 5
|
| 13 | df-topon 14598 |
. . . . 5
| |
| 14 | vpwex 4239 |
. . . . . . 7
| |
| 15 | 14 | pwex 4243 |
. . . . . 6
|
| 16 | rabss 3278 |
. . . . . . 7
| |
| 17 | pwuni 4252 |
. . . . . . . . . 10
| |
| 18 | pweq 3629 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | sseqtrrid 3252 |
. . . . . . . . 9
|
| 20 | velpw 3633 |
. . . . . . . . 9
| |
| 21 | 19, 20 | sylibr 134 |
. . . . . . . 8
|
| 22 | 21 | a1i 9 |
. . . . . . 7
|
| 23 | 16, 22 | mprgbir 2566 |
. . . . . 6
|
| 24 | 15, 23 | ssexi 4198 |
. . . . 5
|
| 25 | 12, 13, 24 | fvmpt3i 5682 |
. . . 4
|
| 26 | 25 | eleq2d 2277 |
. . 3
|
| 27 | unieq 3873 |
. . . . 5
| |
| 28 | 27 | eqeq2d 2219 |
. . . 4
|
| 29 | 28 | elrab 2936 |
. . 3
|
| 30 | 26, 29 | bitrdi 196 |
. 2
|
| 31 | 6, 10, 30 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-topon 14598 |
| This theorem is referenced by: topontop 14601 toponuni 14602 toptopon 14605 toponcom 14614 istps2 14620 tgtopon 14653 distopon 14674 epttop 14677 resttopon 14758 resttopon2 14765 txtopon 14849 |
| Copyright terms: Public domain | W3C validator |