ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopon Unicode version

Theorem istopon 14456
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )

Proof of Theorem istopon
Dummy variables  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funtopon 14455 . . . . 5  |-  Fun TopOn
2 funrel 5287 . . . . 5  |-  ( Fun TopOn  ->  Rel TopOn )
31, 2ax-mp 5 . . . 4  |-  Rel TopOn
4 relelfvdm 5607 . . . 4  |-  ( ( Rel TopOn  /\  J  e.  (TopOn `  B ) )  ->  B  e.  dom TopOn )
53, 4mpan 424 . . 3  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  dom TopOn )
65elexd 2784 . 2  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  _V )
7 uniexg 4485 . . . 4  |-  ( J  e.  Top  ->  U. J  e.  _V )
8 eleq1 2267 . . . 4  |-  ( B  =  U. J  -> 
( B  e.  _V  <->  U. J  e.  _V )
)
97, 8syl5ibrcom 157 . . 3  |-  ( J  e.  Top  ->  ( B  =  U. J  ->  B  e.  _V )
)
109imp 124 . 2  |-  ( ( J  e.  Top  /\  B  =  U. J )  ->  B  e.  _V )
11 eqeq1 2211 . . . . . 6  |-  ( b  =  B  ->  (
b  =  U. j  <->  B  =  U. j ) )
1211rabbidv 2760 . . . . 5  |-  ( b  =  B  ->  { j  e.  Top  |  b  =  U. j }  =  { j  e. 
Top  |  B  =  U. j } )
13 df-topon 14454 . . . . 5  |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  | 
b  =  U. j } )
14 vpwex 4222 . . . . . . 7  |-  ~P b  e.  _V
1514pwex 4226 . . . . . 6  |-  ~P ~P b  e.  _V
16 rabss 3269 . . . . . . 7  |-  ( { j  e.  Top  | 
b  =  U. j }  C_  ~P ~P b  <->  A. j  e.  Top  (
b  =  U. j  ->  j  e.  ~P ~P b ) )
17 pwuni 4235 . . . . . . . . . 10  |-  j  C_  ~P U. j
18 pweq 3618 . . . . . . . . . 10  |-  ( b  =  U. j  ->  ~P b  =  ~P U. j )
1917, 18sseqtrrid 3243 . . . . . . . . 9  |-  ( b  =  U. j  -> 
j  C_  ~P b
)
20 velpw 3622 . . . . . . . . 9  |-  ( j  e.  ~P ~P b  <->  j 
C_  ~P b )
2119, 20sylibr 134 . . . . . . . 8  |-  ( b  =  U. j  -> 
j  e.  ~P ~P b )
2221a1i 9 . . . . . . 7  |-  ( j  e.  Top  ->  (
b  =  U. j  ->  j  e.  ~P ~P b ) )
2316, 22mprgbir 2563 . . . . . 6  |-  { j  e.  Top  |  b  =  U. j } 
C_  ~P ~P b
2415, 23ssexi 4181 . . . . 5  |-  { j  e.  Top  |  b  =  U. j }  e.  _V
2512, 13, 24fvmpt3i 5658 . . . 4  |-  ( B  e.  _V  ->  (TopOn `  B )  =  {
j  e.  Top  |  B  =  U. j } )
2625eleq2d 2274 . . 3  |-  ( B  e.  _V  ->  ( J  e.  (TopOn `  B
)  <->  J  e.  { j  e.  Top  |  B  =  U. j } ) )
27 unieq 3858 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
2827eqeq2d 2216 . . . 4  |-  ( j  =  J  ->  ( B  =  U. j  <->  B  =  U. J ) )
2928elrab 2928 . . 3  |-  ( J  e.  { j  e. 
Top  |  B  =  U. j }  <->  ( J  e.  Top  /\  B  = 
U. J ) )
3026, 29bitrdi 196 . 2  |-  ( B  e.  _V  ->  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) ) )
316, 10, 30pm5.21nii 705 1  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   {crab 2487   _Vcvv 2771    C_ wss 3165   ~Pcpw 3615   U.cuni 3849   dom cdm 4674   Rel wrel 4679   Fun wfun 5264   ` cfv 5270   Topctop 14440  TopOnctopon 14453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-topon 14454
This theorem is referenced by:  topontop  14457  toponuni  14458  toptopon  14461  toponcom  14470  istps2  14476  tgtopon  14509  distopon  14530  epttop  14533  resttopon  14614  resttopon2  14621  txtopon  14705
  Copyright terms: Public domain W3C validator