Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > istopon | Unicode version |
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istopon | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funtopon 12804 | . . . . 5 TopOn | |
2 | funrel 5215 | . . . . 5 TopOn TopOn | |
3 | 1, 2 | ax-mp 5 | . . . 4 TopOn |
4 | relelfvdm 5528 | . . . 4 TopOn TopOn TopOn | |
5 | 3, 4 | mpan 422 | . . 3 TopOn TopOn |
6 | 5 | elexd 2743 | . 2 TopOn |
7 | uniexg 4424 | . . . 4 | |
8 | eleq1 2233 | . . . 4 | |
9 | 7, 8 | syl5ibrcom 156 | . . 3 |
10 | 9 | imp 123 | . 2 |
11 | eqeq1 2177 | . . . . . 6 | |
12 | 11 | rabbidv 2719 | . . . . 5 |
13 | df-topon 12803 | . . . . 5 TopOn | |
14 | vpwex 4165 | . . . . . . 7 | |
15 | 14 | pwex 4169 | . . . . . 6 |
16 | rabss 3224 | . . . . . . 7 | |
17 | pwuni 4178 | . . . . . . . . . 10 | |
18 | pweq 3569 | . . . . . . . . . 10 | |
19 | 17, 18 | sseqtrrid 3198 | . . . . . . . . 9 |
20 | velpw 3573 | . . . . . . . . 9 | |
21 | 19, 20 | sylibr 133 | . . . . . . . 8 |
22 | 21 | a1i 9 | . . . . . . 7 |
23 | 16, 22 | mprgbir 2528 | . . . . . 6 |
24 | 15, 23 | ssexi 4127 | . . . . 5 |
25 | 12, 13, 24 | fvmpt3i 5576 | . . . 4 TopOn |
26 | 25 | eleq2d 2240 | . . 3 TopOn |
27 | unieq 3805 | . . . . 5 | |
28 | 27 | eqeq2d 2182 | . . . 4 |
29 | 28 | elrab 2886 | . . 3 |
30 | 26, 29 | bitrdi 195 | . 2 TopOn |
31 | 6, 10, 30 | pm5.21nii 699 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 crab 2452 cvv 2730 wss 3121 cpw 3566 cuni 3796 cdm 4611 wrel 4616 wfun 5192 cfv 5198 ctop 12789 TopOnctopon 12802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-topon 12803 |
This theorem is referenced by: topontop 12806 toponuni 12807 toptopon 12810 toponcom 12819 istps2 12825 tgtopon 12860 distopon 12881 epttop 12884 resttopon 12965 resttopon2 12972 txtopon 13056 |
Copyright terms: Public domain | W3C validator |