Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > istopon | Unicode version |
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istopon | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funtopon 12650 | . . . . 5 TopOn | |
2 | funrel 5205 | . . . . 5 TopOn TopOn | |
3 | 1, 2 | ax-mp 5 | . . . 4 TopOn |
4 | relelfvdm 5518 | . . . 4 TopOn TopOn TopOn | |
5 | 3, 4 | mpan 421 | . . 3 TopOn TopOn |
6 | 5 | elexd 2739 | . 2 TopOn |
7 | uniexg 4417 | . . . 4 | |
8 | eleq1 2229 | . . . 4 | |
9 | 7, 8 | syl5ibrcom 156 | . . 3 |
10 | 9 | imp 123 | . 2 |
11 | eqeq1 2172 | . . . . . 6 | |
12 | 11 | rabbidv 2715 | . . . . 5 |
13 | df-topon 12649 | . . . . 5 TopOn | |
14 | vpwex 4158 | . . . . . . 7 | |
15 | 14 | pwex 4162 | . . . . . 6 |
16 | rabss 3219 | . . . . . . 7 | |
17 | pwuni 4171 | . . . . . . . . . 10 | |
18 | pweq 3562 | . . . . . . . . . 10 | |
19 | 17, 18 | sseqtrrid 3193 | . . . . . . . . 9 |
20 | velpw 3566 | . . . . . . . . 9 | |
21 | 19, 20 | sylibr 133 | . . . . . . . 8 |
22 | 21 | a1i 9 | . . . . . . 7 |
23 | 16, 22 | mprgbir 2524 | . . . . . 6 |
24 | 15, 23 | ssexi 4120 | . . . . 5 |
25 | 12, 13, 24 | fvmpt3i 5566 | . . . 4 TopOn |
26 | 25 | eleq2d 2236 | . . 3 TopOn |
27 | unieq 3798 | . . . . 5 | |
28 | 27 | eqeq2d 2177 | . . . 4 |
29 | 28 | elrab 2882 | . . 3 |
30 | 26, 29 | bitrdi 195 | . 2 TopOn |
31 | 6, 10, 30 | pm5.21nii 694 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 crab 2448 cvv 2726 wss 3116 cpw 3559 cuni 3789 cdm 4604 wrel 4609 wfun 5182 cfv 5188 ctop 12635 TopOnctopon 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topon 12649 |
This theorem is referenced by: topontop 12652 toponuni 12653 toptopon 12656 toponcom 12665 istps2 12671 tgtopon 12706 distopon 12727 epttop 12730 resttopon 12811 resttopon2 12818 txtopon 12902 |
Copyright terms: Public domain | W3C validator |