ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopon Unicode version

Theorem istopon 11880
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )

Proof of Theorem istopon
Dummy variables  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funtopon 11879 . . . . 5  |-  Fun TopOn
2 funrel 5066 . . . . 5  |-  ( Fun TopOn  ->  Rel TopOn )
31, 2ax-mp 7 . . . 4  |-  Rel TopOn
4 relelfvdm 5371 . . . 4  |-  ( ( Rel TopOn  /\  J  e.  (TopOn `  B ) )  ->  B  e.  dom TopOn )
53, 4mpan 416 . . 3  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  dom TopOn )
65elexd 2646 . 2  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  _V )
7 uniexg 4290 . . . 4  |-  ( J  e.  Top  ->  U. J  e.  _V )
8 eleq1 2157 . . . 4  |-  ( B  =  U. J  -> 
( B  e.  _V  <->  U. J  e.  _V )
)
97, 8syl5ibrcom 156 . . 3  |-  ( J  e.  Top  ->  ( B  =  U. J  ->  B  e.  _V )
)
109imp 123 . 2  |-  ( ( J  e.  Top  /\  B  =  U. J )  ->  B  e.  _V )
11 eqeq1 2101 . . . . . 6  |-  ( b  =  B  ->  (
b  =  U. j  <->  B  =  U. j ) )
1211rabbidv 2622 . . . . 5  |-  ( b  =  B  ->  { j  e.  Top  |  b  =  U. j }  =  { j  e. 
Top  |  B  =  U. j } )
13 df-topon 11878 . . . . 5  |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  | 
b  =  U. j } )
14 vpwex 4035 . . . . . . 7  |-  ~P b  e.  _V
1514pwex 4039 . . . . . 6  |-  ~P ~P b  e.  _V
16 rabss 3113 . . . . . . 7  |-  ( { j  e.  Top  | 
b  =  U. j }  C_  ~P ~P b  <->  A. j  e.  Top  (
b  =  U. j  ->  j  e.  ~P ~P b ) )
17 pwuni 4048 . . . . . . . . . 10  |-  j  C_  ~P U. j
18 pweq 3452 . . . . . . . . . 10  |-  ( b  =  U. j  ->  ~P b  =  ~P U. j )
1917, 18syl5sseqr 3090 . . . . . . . . 9  |-  ( b  =  U. j  -> 
j  C_  ~P b
)
20 selpw 3456 . . . . . . . . 9  |-  ( j  e.  ~P ~P b  <->  j 
C_  ~P b )
2119, 20sylibr 133 . . . . . . . 8  |-  ( b  =  U. j  -> 
j  e.  ~P ~P b )
2221a1i 9 . . . . . . 7  |-  ( j  e.  Top  ->  (
b  =  U. j  ->  j  e.  ~P ~P b ) )
2316, 22mprgbir 2444 . . . . . 6  |-  { j  e.  Top  |  b  =  U. j } 
C_  ~P ~P b
2415, 23ssexi 3998 . . . . 5  |-  { j  e.  Top  |  b  =  U. j }  e.  _V
2512, 13, 24fvmpt3i 5419 . . . 4  |-  ( B  e.  _V  ->  (TopOn `  B )  =  {
j  e.  Top  |  B  =  U. j } )
2625eleq2d 2164 . . 3  |-  ( B  e.  _V  ->  ( J  e.  (TopOn `  B
)  <->  J  e.  { j  e.  Top  |  B  =  U. j } ) )
27 unieq 3684 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
2827eqeq2d 2106 . . . 4  |-  ( j  =  J  ->  ( B  =  U. j  <->  B  =  U. J ) )
2928elrab 2785 . . 3  |-  ( J  e.  { j  e. 
Top  |  B  =  U. j }  <->  ( J  e.  Top  /\  B  = 
U. J ) )
3026, 29syl6bb 195 . 2  |-  ( B  e.  _V  ->  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) ) )
316, 10, 30pm5.21nii 658 1  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445   {crab 2374   _Vcvv 2633    C_ wss 3013   ~Pcpw 3449   U.cuni 3675   dom cdm 4467   Rel wrel 4472   Fun wfun 5043   ` cfv 5049   Topctop 11864  TopOnctopon 11877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-topon 11878
This theorem is referenced by:  topontop  11881  toponuni  11882  toptopon  11885  toponcom  11893  istps2  11899  tgtopon  11934  distopon  11955  epttop  11958  resttopon  12039  resttopon2  12046
  Copyright terms: Public domain W3C validator