ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopon Unicode version

Theorem istopon 14249
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )

Proof of Theorem istopon
Dummy variables  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funtopon 14248 . . . . 5  |-  Fun TopOn
2 funrel 5275 . . . . 5  |-  ( Fun TopOn  ->  Rel TopOn )
31, 2ax-mp 5 . . . 4  |-  Rel TopOn
4 relelfvdm 5590 . . . 4  |-  ( ( Rel TopOn  /\  J  e.  (TopOn `  B ) )  ->  B  e.  dom TopOn )
53, 4mpan 424 . . 3  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  dom TopOn )
65elexd 2776 . 2  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  _V )
7 uniexg 4474 . . . 4  |-  ( J  e.  Top  ->  U. J  e.  _V )
8 eleq1 2259 . . . 4  |-  ( B  =  U. J  -> 
( B  e.  _V  <->  U. J  e.  _V )
)
97, 8syl5ibrcom 157 . . 3  |-  ( J  e.  Top  ->  ( B  =  U. J  ->  B  e.  _V )
)
109imp 124 . 2  |-  ( ( J  e.  Top  /\  B  =  U. J )  ->  B  e.  _V )
11 eqeq1 2203 . . . . . 6  |-  ( b  =  B  ->  (
b  =  U. j  <->  B  =  U. j ) )
1211rabbidv 2752 . . . . 5  |-  ( b  =  B  ->  { j  e.  Top  |  b  =  U. j }  =  { j  e. 
Top  |  B  =  U. j } )
13 df-topon 14247 . . . . 5  |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  | 
b  =  U. j } )
14 vpwex 4212 . . . . . . 7  |-  ~P b  e.  _V
1514pwex 4216 . . . . . 6  |-  ~P ~P b  e.  _V
16 rabss 3260 . . . . . . 7  |-  ( { j  e.  Top  | 
b  =  U. j }  C_  ~P ~P b  <->  A. j  e.  Top  (
b  =  U. j  ->  j  e.  ~P ~P b ) )
17 pwuni 4225 . . . . . . . . . 10  |-  j  C_  ~P U. j
18 pweq 3608 . . . . . . . . . 10  |-  ( b  =  U. j  ->  ~P b  =  ~P U. j )
1917, 18sseqtrrid 3234 . . . . . . . . 9  |-  ( b  =  U. j  -> 
j  C_  ~P b
)
20 velpw 3612 . . . . . . . . 9  |-  ( j  e.  ~P ~P b  <->  j 
C_  ~P b )
2119, 20sylibr 134 . . . . . . . 8  |-  ( b  =  U. j  -> 
j  e.  ~P ~P b )
2221a1i 9 . . . . . . 7  |-  ( j  e.  Top  ->  (
b  =  U. j  ->  j  e.  ~P ~P b ) )
2316, 22mprgbir 2555 . . . . . 6  |-  { j  e.  Top  |  b  =  U. j } 
C_  ~P ~P b
2415, 23ssexi 4171 . . . . 5  |-  { j  e.  Top  |  b  =  U. j }  e.  _V
2512, 13, 24fvmpt3i 5641 . . . 4  |-  ( B  e.  _V  ->  (TopOn `  B )  =  {
j  e.  Top  |  B  =  U. j } )
2625eleq2d 2266 . . 3  |-  ( B  e.  _V  ->  ( J  e.  (TopOn `  B
)  <->  J  e.  { j  e.  Top  |  B  =  U. j } ) )
27 unieq 3848 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
2827eqeq2d 2208 . . . 4  |-  ( j  =  J  ->  ( B  =  U. j  <->  B  =  U. J ) )
2928elrab 2920 . . 3  |-  ( J  e.  { j  e. 
Top  |  B  =  U. j }  <->  ( J  e.  Top  /\  B  = 
U. J ) )
3026, 29bitrdi 196 . 2  |-  ( B  e.  _V  ->  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) ) )
316, 10, 30pm5.21nii 705 1  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   U.cuni 3839   dom cdm 4663   Rel wrel 4668   Fun wfun 5252   ` cfv 5258   Topctop 14233  TopOnctopon 14246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-topon 14247
This theorem is referenced by:  topontop  14250  toponuni  14251  toptopon  14254  toponcom  14263  istps2  14269  tgtopon  14302  distopon  14323  epttop  14326  resttopon  14407  resttopon2  14414  txtopon  14498
  Copyright terms: Public domain W3C validator