ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopon Unicode version

Theorem istopon 14600
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )

Proof of Theorem istopon
Dummy variables  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funtopon 14599 . . . . 5  |-  Fun TopOn
2 funrel 5307 . . . . 5  |-  ( Fun TopOn  ->  Rel TopOn )
31, 2ax-mp 5 . . . 4  |-  Rel TopOn
4 relelfvdm 5631 . . . 4  |-  ( ( Rel TopOn  /\  J  e.  (TopOn `  B ) )  ->  B  e.  dom TopOn )
53, 4mpan 424 . . 3  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  dom TopOn )
65elexd 2790 . 2  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  _V )
7 uniexg 4504 . . . 4  |-  ( J  e.  Top  ->  U. J  e.  _V )
8 eleq1 2270 . . . 4  |-  ( B  =  U. J  -> 
( B  e.  _V  <->  U. J  e.  _V )
)
97, 8syl5ibrcom 157 . . 3  |-  ( J  e.  Top  ->  ( B  =  U. J  ->  B  e.  _V )
)
109imp 124 . 2  |-  ( ( J  e.  Top  /\  B  =  U. J )  ->  B  e.  _V )
11 eqeq1 2214 . . . . . 6  |-  ( b  =  B  ->  (
b  =  U. j  <->  B  =  U. j ) )
1211rabbidv 2765 . . . . 5  |-  ( b  =  B  ->  { j  e.  Top  |  b  =  U. j }  =  { j  e. 
Top  |  B  =  U. j } )
13 df-topon 14598 . . . . 5  |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  | 
b  =  U. j } )
14 vpwex 4239 . . . . . . 7  |-  ~P b  e.  _V
1514pwex 4243 . . . . . 6  |-  ~P ~P b  e.  _V
16 rabss 3278 . . . . . . 7  |-  ( { j  e.  Top  | 
b  =  U. j }  C_  ~P ~P b  <->  A. j  e.  Top  (
b  =  U. j  ->  j  e.  ~P ~P b ) )
17 pwuni 4252 . . . . . . . . . 10  |-  j  C_  ~P U. j
18 pweq 3629 . . . . . . . . . 10  |-  ( b  =  U. j  ->  ~P b  =  ~P U. j )
1917, 18sseqtrrid 3252 . . . . . . . . 9  |-  ( b  =  U. j  -> 
j  C_  ~P b
)
20 velpw 3633 . . . . . . . . 9  |-  ( j  e.  ~P ~P b  <->  j 
C_  ~P b )
2119, 20sylibr 134 . . . . . . . 8  |-  ( b  =  U. j  -> 
j  e.  ~P ~P b )
2221a1i 9 . . . . . . 7  |-  ( j  e.  Top  ->  (
b  =  U. j  ->  j  e.  ~P ~P b ) )
2316, 22mprgbir 2566 . . . . . 6  |-  { j  e.  Top  |  b  =  U. j } 
C_  ~P ~P b
2415, 23ssexi 4198 . . . . 5  |-  { j  e.  Top  |  b  =  U. j }  e.  _V
2512, 13, 24fvmpt3i 5682 . . . 4  |-  ( B  e.  _V  ->  (TopOn `  B )  =  {
j  e.  Top  |  B  =  U. j } )
2625eleq2d 2277 . . 3  |-  ( B  e.  _V  ->  ( J  e.  (TopOn `  B
)  <->  J  e.  { j  e.  Top  |  B  =  U. j } ) )
27 unieq 3873 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
2827eqeq2d 2219 . . . 4  |-  ( j  =  J  ->  ( B  =  U. j  <->  B  =  U. J ) )
2928elrab 2936 . . 3  |-  ( J  e.  { j  e. 
Top  |  B  =  U. j }  <->  ( J  e.  Top  /\  B  = 
U. J ) )
3026, 29bitrdi 196 . 2  |-  ( B  e.  _V  ->  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) ) )
316, 10, 30pm5.21nii 706 1  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626   U.cuni 3864   dom cdm 4693   Rel wrel 4698   Fun wfun 5284   ` cfv 5290   Topctop 14584  TopOnctopon 14597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-topon 14598
This theorem is referenced by:  topontop  14601  toponuni  14602  toptopon  14605  toponcom  14614  istps2  14620  tgtopon  14653  distopon  14674  epttop  14677  resttopon  14758  resttopon2  14765  txtopon  14849
  Copyright terms: Public domain W3C validator