ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssextss GIF version

Theorem ssextss 4253
Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssextss (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssextss
StepHypRef Expression
1 sspwb 4249 . 2 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
2 dfss2 3172 . 2 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
3 vex 2766 . . . . 5 𝑥 ∈ V
43elpw 3611 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53elpw 3611 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
64, 5imbi12i 239 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
76albii 1484 . 2 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
81, 2, 73bitri 206 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wcel 2167  wss 3157  𝒫 cpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628
This theorem is referenced by:  ssext  4254  nssssr  4255
  Copyright terms: Public domain W3C validator