![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssintrab | GIF version |
Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.) |
Ref | Expression |
---|---|
ssintrab | ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2397 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
2 | 1 | inteqi 3739 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
3 | 2 | sseq2i 3088 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
4 | impexp 261 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) | |
5 | 4 | albii 1427 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) |
6 | ssintab 3752 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥)) | |
7 | df-ral 2393 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) | |
8 | 5, 6, 7 | 3bitr4i 211 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
9 | 3, 8 | bitri 183 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1310 ∈ wcel 1461 {cab 2099 ∀wral 2388 {crab 2392 ⊆ wss 3035 ∩ cint 3735 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rab 2397 df-v 2657 df-in 3041 df-ss 3048 df-int 3736 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |