![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssintrab | GIF version |
Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.) |
Ref | Expression |
---|---|
ssintrab | ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2481 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
2 | 1 | inteqi 3874 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
3 | 2 | sseq2i 3206 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
4 | impexp 263 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) | |
5 | 4 | albii 1481 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) |
6 | ssintab 3887 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥)) | |
7 | df-ral 2477 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) | |
8 | 5, 6, 7 | 3bitr4i 212 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
9 | 3, 8 | bitri 184 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∈ wcel 2164 {cab 2179 ∀wral 2472 {crab 2476 ⊆ wss 3153 ∩ cint 3870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rab 2481 df-v 2762 df-in 3159 df-ss 3166 df-int 3871 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |