ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssintrab GIF version

Theorem ssintrab 3830
Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
Assertion
Ref Expression
ssintrab (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ssintrab
StepHypRef Expression
1 df-rab 2444 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
21inteqi 3811 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
32sseq2i 3155 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
4 impexp 261 . . . 4 (((𝑥𝐵𝜑) → 𝐴𝑥) ↔ (𝑥𝐵 → (𝜑𝐴𝑥)))
54albii 1450 . . 3 (∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
6 ssintab 3824 . . 3 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥))
7 df-ral 2440 . . 3 (∀𝑥𝐵 (𝜑𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
85, 6, 73bitr4i 211 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
93, 8bitri 183 1 (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1333  wcel 2128  {cab 2143  wral 2435  {crab 2439  wss 3102   cint 3807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rab 2444  df-v 2714  df-in 3108  df-ss 3115  df-int 3808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator