ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssoprab2 Unicode version

Theorem ssoprab2 6024
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4340. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
ssoprab2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )

Proof of Theorem ssoprab2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . . . . . 10  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21anim2d 337 . . . . . . . . 9  |-  ( (
ph  ->  ps )  -> 
( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
32alimi 1479 . . . . . . . 8  |-  ( A. z ( ph  ->  ps )  ->  A. z
( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
4 exim 1623 . . . . . . . 8  |-  ( A. z ( ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) )  ->  ( E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )  ->  E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ps ) ) )
53, 4syl 14 . . . . . . 7  |-  ( A. z ( ph  ->  ps )  ->  ( E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ps ) ) )
65alimi 1479 . . . . . 6  |-  ( A. y A. z ( ph  ->  ps )  ->  A. y
( E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) ) )
7 exim 1623 . . . . . 6  |-  ( A. y ( E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )  ->  E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ps ) )  -> 
( E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) ) )
86, 7syl 14 . . . . 5  |-  ( A. y A. z ( ph  ->  ps )  ->  ( E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
98alimi 1479 . . . 4  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  A. x ( E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
10 exim 1623 . . . 4  |-  ( A. x ( E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) )  -> 
( E. x E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
119, 10syl 14 . . 3  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  ( E. x E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
1211ss2abdv 3274 . 2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }  C_  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) } )
13 df-oprab 5971 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
14 df-oprab 5971 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) }
1512, 13, 143sstr4g 3244 1  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   E.wex 1516   {cab 2193    C_ wss 3174   <.cop 3646   {coprab 5968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187  df-oprab 5971
This theorem is referenced by:  ssoprab2b  6025
  Copyright terms: Public domain W3C validator