Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssoprab2 | Unicode version |
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4253. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
ssoprab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . . . . . . 10 | |
2 | 1 | anim2d 335 | . . . . . . . . 9 |
3 | 2 | alimi 1443 | . . . . . . . 8 |
4 | exim 1587 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 5 | alimi 1443 | . . . . . 6 |
7 | exim 1587 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | 8 | alimi 1443 | . . . 4 |
10 | exim 1587 | . . . 4 | |
11 | 9, 10 | syl 14 | . . 3 |
12 | 11 | ss2abdv 3215 | . 2 |
13 | df-oprab 5846 | . 2 | |
14 | df-oprab 5846 | . 2 | |
15 | 12, 13, 14 | 3sstr4g 3185 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wex 1480 cab 2151 wss 3116 cop 3579 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-oprab 5846 |
This theorem is referenced by: ssoprab2b 5899 |
Copyright terms: Public domain | W3C validator |