ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssoprab2 Unicode version

Theorem ssoprab2 5898
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4253. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
ssoprab2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )

Proof of Theorem ssoprab2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . . . . . 10  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21anim2d 335 . . . . . . . . 9  |-  ( (
ph  ->  ps )  -> 
( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
32alimi 1443 . . . . . . . 8  |-  ( A. z ( ph  ->  ps )  ->  A. z
( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
4 exim 1587 . . . . . . . 8  |-  ( A. z ( ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) )  ->  ( E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )  ->  E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ps ) ) )
53, 4syl 14 . . . . . . 7  |-  ( A. z ( ph  ->  ps )  ->  ( E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ps ) ) )
65alimi 1443 . . . . . 6  |-  ( A. y A. z ( ph  ->  ps )  ->  A. y
( E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) ) )
7 exim 1587 . . . . . 6  |-  ( A. y ( E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )  ->  E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ps ) )  -> 
( E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) ) )
86, 7syl 14 . . . . 5  |-  ( A. y A. z ( ph  ->  ps )  ->  ( E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
98alimi 1443 . . . 4  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  A. x ( E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
10 exim 1587 . . . 4  |-  ( A. x ( E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) )  -> 
( E. x E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
119, 10syl 14 . . 3  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  ( E. x E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps ) ) )
1211ss2abdv 3215 . 2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }  C_  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) } )
13 df-oprab 5846 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
14 df-oprab 5846 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) }
1512, 13, 143sstr4g 3185 1  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343   E.wex 1480   {cab 2151    C_ wss 3116   <.cop 3579   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-oprab 5846
This theorem is referenced by:  ssoprab2b  5899
  Copyright terms: Public domain W3C validator