Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssoprab2 | Unicode version |
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4260. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
ssoprab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . . . . . . 10 | |
2 | 1 | anim2d 335 | . . . . . . . . 9 |
3 | 2 | alimi 1448 | . . . . . . . 8 |
4 | exim 1592 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 5 | alimi 1448 | . . . . . 6 |
7 | exim 1592 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | 8 | alimi 1448 | . . . 4 |
10 | exim 1592 | . . . 4 | |
11 | 9, 10 | syl 14 | . . 3 |
12 | 11 | ss2abdv 3220 | . 2 |
13 | df-oprab 5857 | . 2 | |
14 | df-oprab 5857 | . 2 | |
15 | 12, 13, 14 | 3sstr4g 3190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wex 1485 cab 2156 wss 3121 cop 3586 coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-in 3127 df-ss 3134 df-oprab 5857 |
This theorem is referenced by: ssoprab2b 5910 |
Copyright terms: Public domain | W3C validator |