| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssoprab2 | Unicode version | ||
| Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4310. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| ssoprab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . . . . . 10
| |
| 2 | 1 | anim2d 337 |
. . . . . . . . 9
|
| 3 | 2 | alimi 1469 |
. . . . . . . 8
|
| 4 | exim 1613 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
|
| 6 | 5 | alimi 1469 |
. . . . . 6
|
| 7 | exim 1613 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | alimi 1469 |
. . . 4
|
| 10 | exim 1613 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | 11 | ss2abdv 3256 |
. 2
|
| 13 | df-oprab 5926 |
. 2
| |
| 14 | df-oprab 5926 |
. 2
| |
| 15 | 12, 13, 14 | 3sstr4g 3226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-oprab 5926 |
| This theorem is referenced by: ssoprab2b 5979 |
| Copyright terms: Public domain | W3C validator |