ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres Unicode version

Theorem relres 5033
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres  |-  Rel  ( A  |`  B )

Proof of Theorem relres
StepHypRef Expression
1 df-res 4731 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
2 inss2 3425 . . 3  |-  ( A  i^i  ( B  X.  _V ) )  C_  ( B  X.  _V )
31, 2eqsstri 3256 . 2  |-  ( A  |`  B )  C_  ( B  X.  _V )
4 relxp 4828 . 2  |-  Rel  ( B  X.  _V )
5 relss 4806 . 2  |-  ( ( A  |`  B )  C_  ( B  X.  _V )  ->  ( Rel  ( B  X.  _V )  ->  Rel  ( A  |`  B ) ) )
63, 4, 5mp2 16 1  |-  Rel  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2799    i^i cin 3196    C_ wss 3197    X. cxp 4717    |` cres 4721   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-opab 4146  df-xp 4725  df-rel 4726  df-res 4731
This theorem is referenced by:  elres  5041  resiexg  5050  iss  5051  dfres2  5057  restidsing  5061  issref  5111  asymref  5114  poirr2  5121  cnvcnvres  5192  resco  5233  ressn  5269  funssres  5360  fnresdisj  5433  fnres  5440  fcnvres  5509  nfunsn  5664  fsnunfv  5840  resfunexgALT  6253  setsresg  13070
  Copyright terms: Public domain W3C validator