| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relres | Unicode version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4731 |
. . 3
| |
| 2 | inss2 3425 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3256 |
. 2
|
| 4 | relxp 4828 |
. 2
| |
| 5 | relss 4806 |
. 2
| |
| 6 | 3, 4, 5 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-opab 4146 df-xp 4725 df-rel 4726 df-res 4731 |
| This theorem is referenced by: elres 5041 resiexg 5050 iss 5051 dfres2 5057 restidsing 5061 issref 5111 asymref 5114 poirr2 5121 cnvcnvres 5192 resco 5233 ressn 5269 funssres 5360 fnresdisj 5433 fnres 5440 fcnvres 5509 nfunsn 5664 fsnunfv 5840 resfunexgALT 6253 setsresg 13070 |
| Copyright terms: Public domain | W3C validator |