ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres Unicode version

Theorem relres 4974
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres  |-  Rel  ( A  |`  B )

Proof of Theorem relres
StepHypRef Expression
1 df-res 4675 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
2 inss2 3384 . . 3  |-  ( A  i^i  ( B  X.  _V ) )  C_  ( B  X.  _V )
31, 2eqsstri 3215 . 2  |-  ( A  |`  B )  C_  ( B  X.  _V )
4 relxp 4772 . 2  |-  Rel  ( B  X.  _V )
5 relss 4750 . 2  |-  ( ( A  |`  B )  C_  ( B  X.  _V )  ->  ( Rel  ( B  X.  _V )  ->  Rel  ( A  |`  B ) ) )
63, 4, 5mp2 16 1  |-  Rel  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2763    i^i cin 3156    C_ wss 3157    X. cxp 4661    |` cres 4665   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-opab 4095  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by:  elres  4982  resiexg  4991  iss  4992  dfres2  4998  restidsing  5002  issref  5052  asymref  5055  poirr2  5062  cnvcnvres  5133  resco  5174  ressn  5210  funssres  5300  fnresdisj  5368  fnres  5374  fcnvres  5441  nfunsn  5593  fsnunfv  5763  resfunexgALT  6165  setsresg  12716
  Copyright terms: Public domain W3C validator