Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relres | Unicode version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4595 | . . 3 | |
2 | inss2 3328 | . . 3 | |
3 | 1, 2 | eqsstri 3160 | . 2 |
4 | relxp 4692 | . 2 | |
5 | relss 4670 | . 2 | |
6 | 3, 4, 5 | mp2 16 | 1 |
Colors of variables: wff set class |
Syntax hints: cvv 2712 cin 3101 wss 3102 cxp 4581 cres 4585 wrel 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-opab 4026 df-xp 4589 df-rel 4590 df-res 4595 |
This theorem is referenced by: elres 4899 resiexg 4908 iss 4909 dfres2 4915 issref 4965 asymref 4968 poirr2 4975 cnvcnvres 5046 resco 5087 ressn 5123 funssres 5209 fnresdisj 5277 fnres 5283 fcnvres 5350 nfunsn 5499 fsnunfv 5665 resfunexgALT 6052 setsresg 12188 |
Copyright terms: Public domain | W3C validator |