| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relres | Unicode version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4688 |
. . 3
| |
| 2 | inss2 3394 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3225 |
. 2
|
| 4 | relxp 4785 |
. 2
| |
| 5 | relss 4763 |
. 2
| |
| 6 | 3, 4, 5 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-opab 4107 df-xp 4682 df-rel 4683 df-res 4688 |
| This theorem is referenced by: elres 4996 resiexg 5005 iss 5006 dfres2 5012 restidsing 5016 issref 5066 asymref 5069 poirr2 5076 cnvcnvres 5147 resco 5188 ressn 5224 funssres 5314 fnresdisj 5387 fnres 5394 fcnvres 5461 nfunsn 5613 fsnunfv 5787 resfunexgALT 6195 setsresg 12903 |
| Copyright terms: Public domain | W3C validator |