| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relres | Unicode version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4676 |
. . 3
| |
| 2 | inss2 3385 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3216 |
. 2
|
| 4 | relxp 4773 |
. 2
| |
| 5 | relss 4751 |
. 2
| |
| 6 | 3, 4, 5 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-opab 4096 df-xp 4670 df-rel 4671 df-res 4676 |
| This theorem is referenced by: elres 4983 resiexg 4992 iss 4993 dfres2 4999 restidsing 5003 issref 5053 asymref 5056 poirr2 5063 cnvcnvres 5134 resco 5175 ressn 5211 funssres 5301 fnresdisj 5371 fnres 5377 fcnvres 5444 nfunsn 5596 fsnunfv 5766 resfunexgALT 6174 setsresg 12741 |
| Copyright terms: Public domain | W3C validator |