ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssres2 GIF version

Theorem ssres2 5031
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 4828 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 3430 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 14 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 4730 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 4730 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 3267 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2799  cin 3196  wss 3197   × cxp 4716  cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-opab 4145  df-xp 4724  df-res 4730
This theorem is referenced by:  imass2  5103  resasplitss  5504  fnsnsplitss  5837  1stcof  6307  2ndcof  6308
  Copyright terms: Public domain W3C validator