ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssres2 GIF version

Theorem ssres2 4969
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 4769 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 3385 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 14 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 4671 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 4671 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 3222 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2760  cin 3152  wss 3153   × cxp 4657  cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-opab 4091  df-xp 4665  df-res 4671
This theorem is referenced by:  imass2  5041  resasplitss  5433  fnsnsplitss  5757  1stcof  6216  2ndcof  6217
  Copyright terms: Public domain W3C validator