ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndcof Unicode version

Theorem 2ndcof 6143
Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
2ndcof  |-  ( F : A --> ( B  X.  C )  -> 
( 2nd  o.  F
) : A --> C )

Proof of Theorem 2ndcof
StepHypRef Expression
1 fo2nd 6137 . . . 4  |-  2nd : _V -onto-> _V
2 fofn 5422 . . . 4  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
31, 2ax-mp 5 . . 3  |-  2nd  Fn  _V
4 ffn 5347 . . . 4  |-  ( F : A --> ( B  X.  C )  ->  F  Fn  A )
5 dffn2 5349 . . . 4  |-  ( F  Fn  A  <->  F : A
--> _V )
64, 5sylib 121 . . 3  |-  ( F : A --> ( B  X.  C )  ->  F : A --> _V )
7 fnfco 5372 . . 3  |-  ( ( 2nd  Fn  _V  /\  F : A --> _V )  ->  ( 2nd  o.  F
)  Fn  A )
83, 6, 7sylancr 412 . 2  |-  ( F : A --> ( B  X.  C )  -> 
( 2nd  o.  F
)  Fn  A )
9 rnco 5117 . . 3  |-  ran  ( 2nd  o.  F )  =  ran  ( 2nd  |`  ran  F
)
10 frn 5356 . . . . 5  |-  ( F : A --> ( B  X.  C )  ->  ran  F  C_  ( B  X.  C ) )
11 ssres2 4918 . . . . 5  |-  ( ran 
F  C_  ( B  X.  C )  ->  ( 2nd  |`  ran  F ) 
C_  ( 2nd  |`  ( B  X.  C ) ) )
12 rnss 4841 . . . . 5  |-  ( ( 2nd  |`  ran  F ) 
C_  ( 2nd  |`  ( B  X.  C ) )  ->  ran  ( 2nd  |` 
ran  F )  C_  ran  ( 2nd  |`  ( B  X.  C ) ) )
1310, 11, 123syl 17 . . . 4  |-  ( F : A --> ( B  X.  C )  ->  ran  ( 2nd  |`  ran  F
)  C_  ran  ( 2nd  |`  ( B  X.  C
) ) )
14 f2ndres 6139 . . . . 5  |-  ( 2nd  |`  ( B  X.  C
) ) : ( B  X.  C ) --> C
15 frn 5356 . . . . 5  |-  ( ( 2nd  |`  ( B  X.  C ) ) : ( B  X.  C
) --> C  ->  ran  ( 2nd  |`  ( B  X.  C ) )  C_  C )
1614, 15ax-mp 5 . . . 4  |-  ran  ( 2nd  |`  ( B  X.  C ) )  C_  C
1713, 16sstrdi 3159 . . 3  |-  ( F : A --> ( B  X.  C )  ->  ran  ( 2nd  |`  ran  F
)  C_  C )
189, 17eqsstrid 3193 . 2  |-  ( F : A --> ( B  X.  C )  ->  ran  ( 2nd  o.  F
)  C_  C )
19 df-f 5202 . 2  |-  ( ( 2nd  o.  F ) : A --> C  <->  ( ( 2nd  o.  F )  Fn  A  /\  ran  ( 2nd  o.  F )  C_  C ) )
208, 18, 19sylanbrc 415 1  |-  ( F : A --> ( B  X.  C )  -> 
( 2nd  o.  F
) : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   _Vcvv 2730    C_ wss 3121    X. cxp 4609   ran crn 4612    |` cres 4613    o. ccom 4615    Fn wfn 5193   -->wf 5194   -onto->wfo 5196   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator