ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imass2 Unicode version

Theorem imass2 4959
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
imass2  |-  ( A 
C_  B  ->  ( C " A )  C_  ( C " B ) )

Proof of Theorem imass2
StepHypRef Expression
1 ssres2 4890 . . 3  |-  ( A 
C_  B  ->  ( C  |`  A )  C_  ( C  |`  B ) )
2 rnss 4813 . . 3  |-  ( ( C  |`  A )  C_  ( C  |`  B )  ->  ran  ( C  |`  A )  C_  ran  ( C  |`  B ) )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  ran  ( C  |`  A ) 
C_  ran  ( C  |`  B ) )
4 df-ima 4596 . 2  |-  ( C
" A )  =  ran  ( C  |`  A )
5 df-ima 4596 . 2  |-  ( C
" B )  =  ran  ( C  |`  B )
63, 4, 53sstr4g 3171 1  |-  ( A 
C_  B  ->  ( C " A )  C_  ( C " B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3102   ran crn 4584    |` cres 4585   "cima 4586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4589  df-cnv 4591  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596
This theorem is referenced by:  funimass1  5244  funimass2  5245  fvimacnv  5579  f1imass  5719  ecinxp  6548  sbthlem1  6894  sbthlem2  6895  iscnp4  12578  cnptopco  12582  cnntri  12584  cnrest2  12596  cnptopresti  12598  cnptoprest  12599  metcnp3  12871
  Copyright terms: Public domain W3C validator