ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imass2 Unicode version

Theorem imass2 5046
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
imass2  |-  ( A 
C_  B  ->  ( C " A )  C_  ( C " B ) )

Proof of Theorem imass2
StepHypRef Expression
1 ssres2 4974 . . 3  |-  ( A 
C_  B  ->  ( C  |`  A )  C_  ( C  |`  B ) )
2 rnss 4897 . . 3  |-  ( ( C  |`  A )  C_  ( C  |`  B )  ->  ran  ( C  |`  A )  C_  ran  ( C  |`  B ) )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  ran  ( C  |`  A ) 
C_  ran  ( C  |`  B ) )
4 df-ima 4677 . 2  |-  ( C
" A )  =  ran  ( C  |`  A )
5 df-ima 4677 . 2  |-  ( C
" B )  =  ran  ( C  |`  B )
63, 4, 53sstr4g 3227 1  |-  ( A 
C_  B  ->  ( C " A )  C_  ( C " B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3157   ran crn 4665    |` cres 4666   "cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  funimass1  5336  funimass2  5337  fvimacnv  5678  f1imass  5822  ecinxp  6670  sbthlem1  7024  sbthlem2  7025  iscnp4  14464  cnptopco  14468  cnntri  14470  cnrest2  14482  cnptopresti  14484  cnptoprest  14485  metcnp3  14757
  Copyright terms: Public domain W3C validator