ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stcof Unicode version

Theorem 1stcof 6309
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
Assertion
Ref Expression
1stcof  |-  ( F : A --> ( B  X.  C )  -> 
( 1st  o.  F
) : A --> B )

Proof of Theorem 1stcof
StepHypRef Expression
1 fo1st 6303 . . . 4  |-  1st : _V -onto-> _V
2 fofn 5550 . . . 4  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 5 . . 3  |-  1st  Fn  _V
4 ffn 5473 . . . 4  |-  ( F : A --> ( B  X.  C )  ->  F  Fn  A )
5 dffn2 5475 . . . 4  |-  ( F  Fn  A  <->  F : A
--> _V )
64, 5sylib 122 . . 3  |-  ( F : A --> ( B  X.  C )  ->  F : A --> _V )
7 fnfco 5500 . . 3  |-  ( ( 1st  Fn  _V  /\  F : A --> _V )  ->  ( 1st  o.  F
)  Fn  A )
83, 6, 7sylancr 414 . 2  |-  ( F : A --> ( B  X.  C )  -> 
( 1st  o.  F
)  Fn  A )
9 rnco 5235 . . 3  |-  ran  ( 1st  o.  F )  =  ran  ( 1st  |`  ran  F
)
10 frn 5482 . . . . 5  |-  ( F : A --> ( B  X.  C )  ->  ran  F  C_  ( B  X.  C ) )
11 ssres2 5032 . . . . 5  |-  ( ran 
F  C_  ( B  X.  C )  ->  ( 1st  |`  ran  F ) 
C_  ( 1st  |`  ( B  X.  C ) ) )
12 rnss 4954 . . . . 5  |-  ( ( 1st  |`  ran  F ) 
C_  ( 1st  |`  ( B  X.  C ) )  ->  ran  ( 1st  |` 
ran  F )  C_  ran  ( 1st  |`  ( B  X.  C ) ) )
1310, 11, 123syl 17 . . . 4  |-  ( F : A --> ( B  X.  C )  ->  ran  ( 1st  |`  ran  F
)  C_  ran  ( 1st  |`  ( B  X.  C
) ) )
14 f1stres 6305 . . . . 5  |-  ( 1st  |`  ( B  X.  C
) ) : ( B  X.  C ) --> B
15 frn 5482 . . . . 5  |-  ( ( 1st  |`  ( B  X.  C ) ) : ( B  X.  C
) --> B  ->  ran  ( 1st  |`  ( B  X.  C ) )  C_  B )
1614, 15ax-mp 5 . . . 4  |-  ran  ( 1st  |`  ( B  X.  C ) )  C_  B
1713, 16sstrdi 3236 . . 3  |-  ( F : A --> ( B  X.  C )  ->  ran  ( 1st  |`  ran  F
)  C_  B )
189, 17eqsstrid 3270 . 2  |-  ( F : A --> ( B  X.  C )  ->  ran  ( 1st  o.  F
)  C_  B )
19 df-f 5322 . 2  |-  ( ( 1st  o.  F ) : A --> B  <->  ( ( 1st  o.  F )  Fn  A  /\  ran  ( 1st  o.  F )  C_  B ) )
208, 18, 19sylanbrc 417 1  |-  ( F : A --> ( B  X.  C )  -> 
( 1st  o.  F
) : A --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   _Vcvv 2799    C_ wss 3197    X. cxp 4717   ran crn 4720    |` cres 4721    o. ccom 4723    Fn wfn 5313   -->wf 5314   -onto->wfo 5316   1stc1st 6284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator