Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssorduni | Unicode version |
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ssorduni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 3793 | . . . . 5 | |
2 | ssel 3136 | . . . . . . . . 9 | |
3 | onelss 4365 | . . . . . . . . 9 | |
4 | 2, 3 | syl6 33 | . . . . . . . 8 |
5 | anc2r 326 | . . . . . . . 8 | |
6 | 4, 5 | syl 14 | . . . . . . 7 |
7 | ssuni 3811 | . . . . . . 7 | |
8 | 6, 7 | syl8 71 | . . . . . 6 |
9 | 8 | rexlimdv 2582 | . . . . 5 |
10 | 1, 9 | syl5bi 151 | . . . 4 |
11 | 10 | ralrimiv 2538 | . . 3 |
12 | dftr3 4084 | . . 3 | |
13 | 11, 12 | sylibr 133 | . 2 |
14 | onelon 4362 | . . . . . . 7 | |
15 | 14 | ex 114 | . . . . . 6 |
16 | 2, 15 | syl6 33 | . . . . 5 |
17 | 16 | rexlimdv 2582 | . . . 4 |
18 | 1, 17 | syl5bi 151 | . . 3 |
19 | 18 | ssrdv 3148 | . 2 |
20 | ordon 4463 | . . 3 | |
21 | trssord 4358 | . . . 4 | |
22 | 21 | 3exp 1192 | . . 3 |
23 | 20, 22 | mpii 44 | . 2 |
24 | 13, 19, 23 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 wral 2444 wrex 2445 wss 3116 cuni 3789 wtr 4080 word 4340 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: ssonuni 4465 orduni 4472 tfrlem8 6286 tfrexlem 6302 |
Copyright terms: Public domain | W3C validator |