| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssorduni | Unicode version | ||
| Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| ssorduni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 3854 |
. . . . 5
| |
| 2 | ssel 3187 |
. . . . . . . . 9
| |
| 3 | onelss 4434 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl6 33 |
. . . . . . . 8
|
| 5 | anc2r 328 |
. . . . . . . 8
| |
| 6 | 4, 5 | syl 14 |
. . . . . . 7
|
| 7 | ssuni 3872 |
. . . . . . 7
| |
| 8 | 6, 7 | syl8 71 |
. . . . . 6
|
| 9 | 8 | rexlimdv 2622 |
. . . . 5
|
| 10 | 1, 9 | biimtrid 152 |
. . . 4
|
| 11 | 10 | ralrimiv 2578 |
. . 3
|
| 12 | dftr3 4146 |
. . 3
| |
| 13 | 11, 12 | sylibr 134 |
. 2
|
| 14 | onelon 4431 |
. . . . . . 7
| |
| 15 | 14 | ex 115 |
. . . . . 6
|
| 16 | 2, 15 | syl6 33 |
. . . . 5
|
| 17 | 16 | rexlimdv 2622 |
. . . 4
|
| 18 | 1, 17 | biimtrid 152 |
. . 3
|
| 19 | 18 | ssrdv 3199 |
. 2
|
| 20 | ordon 4534 |
. . 3
| |
| 21 | trssord 4427 |
. . . 4
| |
| 22 | 21 | 3exp 1205 |
. . 3
|
| 23 | 20, 22 | mpii 44 |
. 2
|
| 24 | 13, 19, 23 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 |
| This theorem is referenced by: ssonuni 4536 orduni 4543 tfrlem8 6404 tfrexlem 6420 |
| Copyright terms: Public domain | W3C validator |