| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssorduni | Unicode version | ||
| Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| ssorduni | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluni2 3843 | 
. . . . 5
 | |
| 2 | ssel 3177 | 
. . . . . . . . 9
 | |
| 3 | onelss 4422 | 
. . . . . . . . 9
 | |
| 4 | 2, 3 | syl6 33 | 
. . . . . . . 8
 | 
| 5 | anc2r 328 | 
. . . . . . . 8
 | |
| 6 | 4, 5 | syl 14 | 
. . . . . . 7
 | 
| 7 | ssuni 3861 | 
. . . . . . 7
 | |
| 8 | 6, 7 | syl8 71 | 
. . . . . 6
 | 
| 9 | 8 | rexlimdv 2613 | 
. . . . 5
 | 
| 10 | 1, 9 | biimtrid 152 | 
. . . 4
 | 
| 11 | 10 | ralrimiv 2569 | 
. . 3
 | 
| 12 | dftr3 4135 | 
. . 3
 | |
| 13 | 11, 12 | sylibr 134 | 
. 2
 | 
| 14 | onelon 4419 | 
. . . . . . 7
 | |
| 15 | 14 | ex 115 | 
. . . . . 6
 | 
| 16 | 2, 15 | syl6 33 | 
. . . . 5
 | 
| 17 | 16 | rexlimdv 2613 | 
. . . 4
 | 
| 18 | 1, 17 | biimtrid 152 | 
. . 3
 | 
| 19 | 18 | ssrdv 3189 | 
. 2
 | 
| 20 | ordon 4522 | 
. . 3
 | |
| 21 | trssord 4415 | 
. . . 4
 | |
| 22 | 21 | 3exp 1204 | 
. . 3
 | 
| 23 | 20, 22 | mpii 44 | 
. 2
 | 
| 24 | 13, 19, 23 | sylc 62 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: ssonuni 4524 orduni 4531 tfrlem8 6376 tfrexlem 6392 | 
| Copyright terms: Public domain | W3C validator |