ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssorduni Unicode version

Theorem ssorduni 4535
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ssorduni  |-  ( A 
C_  On  ->  Ord  U. A )

Proof of Theorem ssorduni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3854 . . . . 5  |-  ( x  e.  U. A  <->  E. y  e.  A  x  e.  y )
2 ssel 3187 . . . . . . . . 9  |-  ( A 
C_  On  ->  ( y  e.  A  ->  y  e.  On ) )
3 onelss 4434 . . . . . . . . 9  |-  ( y  e.  On  ->  (
x  e.  y  ->  x  C_  y ) )
42, 3syl6 33 . . . . . . . 8  |-  ( A 
C_  On  ->  ( y  e.  A  ->  (
x  e.  y  ->  x  C_  y ) ) )
5 anc2r 328 . . . . . . . 8  |-  ( ( y  e.  A  -> 
( x  e.  y  ->  x  C_  y
) )  ->  (
y  e.  A  -> 
( x  e.  y  ->  ( x  C_  y  /\  y  e.  A
) ) ) )
64, 5syl 14 . . . . . . 7  |-  ( A 
C_  On  ->  ( y  e.  A  ->  (
x  e.  y  -> 
( x  C_  y  /\  y  e.  A
) ) ) )
7 ssuni 3872 . . . . . . 7  |-  ( ( x  C_  y  /\  y  e.  A )  ->  x  C_  U. A )
86, 7syl8 71 . . . . . 6  |-  ( A 
C_  On  ->  ( y  e.  A  ->  (
x  e.  y  ->  x  C_  U. A ) ) )
98rexlimdv 2622 . . . . 5  |-  ( A 
C_  On  ->  ( E. y  e.  A  x  e.  y  ->  x  C_ 
U. A ) )
101, 9biimtrid 152 . . . 4  |-  ( A 
C_  On  ->  ( x  e.  U. A  ->  x  C_  U. A ) )
1110ralrimiv 2578 . . 3  |-  ( A 
C_  On  ->  A. x  e.  U. A x  C_  U. A )
12 dftr3 4146 . . 3  |-  ( Tr 
U. A  <->  A. x  e.  U. A x  C_  U. A )
1311, 12sylibr 134 . 2  |-  ( A 
C_  On  ->  Tr  U. A )
14 onelon 4431 . . . . . . 7  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
1514ex 115 . . . . . 6  |-  ( y  e.  On  ->  (
x  e.  y  ->  x  e.  On )
)
162, 15syl6 33 . . . . 5  |-  ( A 
C_  On  ->  ( y  e.  A  ->  (
x  e.  y  ->  x  e.  On )
) )
1716rexlimdv 2622 . . . 4  |-  ( A 
C_  On  ->  ( E. y  e.  A  x  e.  y  ->  x  e.  On ) )
181, 17biimtrid 152 . . 3  |-  ( A 
C_  On  ->  ( x  e.  U. A  ->  x  e.  On )
)
1918ssrdv 3199 . 2  |-  ( A 
C_  On  ->  U. A  C_  On )
20 ordon 4534 . . 3  |-  Ord  On
21 trssord 4427 . . . 4  |-  ( ( Tr  U. A  /\  U. A  C_  On  /\  Ord  On )  ->  Ord  U. A
)
22213exp 1205 . . 3  |-  ( Tr 
U. A  ->  ( U. A  C_  On  ->  ( Ord  On  ->  Ord  U. A ) ) )
2320, 22mpii 44 . 2  |-  ( Tr 
U. A  ->  ( U. A  C_  On  ->  Ord  U. A ) )
2413, 19, 23sylc 62 1  |-  ( A 
C_  On  ->  Ord  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   U.cuni 3850   Tr wtr 4142   Ord word 4409   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415
This theorem is referenced by:  ssonuni  4536  orduni  4543  tfrlem8  6404  tfrexlem  6420
  Copyright terms: Public domain W3C validator