Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniss | Unicode version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . . 5 | |
2 | 1 | anim2d 335 | . . . 4 |
3 | 2 | eximdv 1868 | . . 3 |
4 | eluni 3792 | . . 3 | |
5 | eluni 3792 | . . 3 | |
6 | 3, 4, 5 | 3imtr4g 204 | . 2 |
7 | 6 | ssrdv 3148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1480 wcel 2136 wss 3116 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 |
This theorem is referenced by: unissi 3812 unissd 3813 intssuni2m 3848 relfld 5132 tgcl 12704 distop 12725 |
Copyright terms: Public domain | W3C validator |