Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniss | Unicode version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . . 5 | |
2 | 1 | anim2d 335 | . . . 4 |
3 | 2 | eximdv 1873 | . . 3 |
4 | eluni 3799 | . . 3 | |
5 | eluni 3799 | . . 3 | |
6 | 3, 4, 5 | 3imtr4g 204 | . 2 |
7 | 6 | ssrdv 3153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1485 wcel 2141 wss 3121 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 |
This theorem is referenced by: unissi 3819 unissd 3820 intssuni2m 3855 relfld 5139 tgcl 12858 distop 12879 |
Copyright terms: Public domain | W3C validator |