| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniss | Unicode version | ||
| Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| uniss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. . . . 5
| |
| 2 | 1 | anim2d 337 |
. . . 4
|
| 3 | 2 | eximdv 1904 |
. . 3
|
| 4 | eluni 3867 |
. . 3
| |
| 5 | eluni 3867 |
. . 3
| |
| 6 | 3, 4, 5 | 3imtr4g 205 |
. 2
|
| 7 | 6 | ssrdv 3207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-uni 3865 |
| This theorem is referenced by: unissi 3887 unissd 3888 intssuni2m 3923 relfld 5230 prdsvallem 13219 prdsval 13220 tgcl 14651 distop 14672 |
| Copyright terms: Public domain | W3C validator |