ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniss Unicode version

Theorem uniss 3845
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniss  |-  ( A 
C_  B  ->  U. A  C_ 
U. B )

Proof of Theorem uniss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3164 . . . . 5  |-  ( A 
C_  B  ->  (
y  e.  A  -> 
y  e.  B ) )
21anim2d 337 . . . 4  |-  ( A 
C_  B  ->  (
( x  e.  y  /\  y  e.  A
)  ->  ( x  e.  y  /\  y  e.  B ) ) )
32eximdv 1891 . . 3  |-  ( A 
C_  B  ->  ( E. y ( x  e.  y  /\  y  e.  A )  ->  E. y
( x  e.  y  /\  y  e.  B
) ) )
4 eluni 3827 . . 3  |-  ( x  e.  U. A  <->  E. y
( x  e.  y  /\  y  e.  A
) )
5 eluni 3827 . . 3  |-  ( x  e.  U. B  <->  E. y
( x  e.  y  /\  y  e.  B
) )
63, 4, 53imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
x  e.  U. A  ->  x  e.  U. B
) )
76ssrdv 3176 1  |-  ( A 
C_  B  ->  U. A  C_ 
U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1503    e. wcel 2160    C_ wss 3144   U.cuni 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157  df-uni 3825
This theorem is referenced by:  unissi  3847  unissd  3848  intssuni2m  3883  relfld  5175  tgcl  14016  distop  14037
  Copyright terms: Public domain W3C validator