ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssunieq GIF version

Theorem ssunieq 3897
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.)
Assertion
Ref Expression
ssunieq ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssunieq
StepHypRef Expression
1 elssuni 3892 . . 3 (𝐴𝐵𝐴 𝐵)
2 unissb 3894 . . . 4 ( 𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
32biimpri 133 . . 3 (∀𝑥𝐵 𝑥𝐴 𝐵𝐴)
41, 3anim12i 338 . 2 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → (𝐴 𝐵 𝐵𝐴))
5 eqss 3216 . 2 (𝐴 = 𝐵 ↔ (𝐴 𝐵 𝐵𝐴))
64, 5sylibr 134 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wral 2486  wss 3174   cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865
This theorem is referenced by:  unimax  3898  hashinfuni  10959  hashennnuni  10961
  Copyright terms: Public domain W3C validator