ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssunieq GIF version

Theorem ssunieq 3921
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.)
Assertion
Ref Expression
ssunieq ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssunieq
StepHypRef Expression
1 elssuni 3916 . . 3 (𝐴𝐵𝐴 𝐵)
2 unissb 3918 . . . 4 ( 𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
32biimpri 133 . . 3 (∀𝑥𝐵 𝑥𝐴 𝐵𝐴)
41, 3anim12i 338 . 2 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → (𝐴 𝐵 𝐵𝐴))
5 eqss 3239 . 2 (𝐴 = 𝐵 ↔ (𝐴 𝐵 𝐵𝐴))
64, 5sylibr 134 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wss 3197   cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889
This theorem is referenced by:  unimax  3922  hashinfuni  10999  hashennnuni  11001
  Copyright terms: Public domain W3C validator