Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssunieq | GIF version |
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.) |
Ref | Expression |
---|---|
ssunieq | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → 𝐴 = ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 3817 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) | |
2 | unissb 3819 | . . . 4 ⊢ (∪ 𝐵 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) | |
3 | 2 | biimpri 132 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴) |
4 | 1, 3 | anim12i 336 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → (𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ 𝐴)) |
5 | eqss 3157 | . 2 ⊢ (𝐴 = ∪ 𝐵 ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ 𝐴)) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → 𝐴 = ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 |
This theorem is referenced by: unimax 3823 hashinfuni 10690 hashennnuni 10692 |
Copyright terms: Public domain | W3C validator |