ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssunieq GIF version

Theorem ssunieq 3868
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.)
Assertion
Ref Expression
ssunieq ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssunieq
StepHypRef Expression
1 elssuni 3863 . . 3 (𝐴𝐵𝐴 𝐵)
2 unissb 3865 . . . 4 ( 𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
32biimpri 133 . . 3 (∀𝑥𝐵 𝑥𝐴 𝐵𝐴)
41, 3anim12i 338 . 2 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → (𝐴 𝐵 𝐵𝐴))
5 eqss 3194 . 2 (𝐴 = 𝐵 ↔ (𝐴 𝐵 𝐵𝐴))
64, 5sylibr 134 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wss 3153   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836
This theorem is referenced by:  unimax  3869  hashinfuni  10848  hashennnuni  10850
  Copyright terms: Public domain W3C validator