| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashennnuni | Unicode version | ||
| Description: The ordinal size of a set
equinumerous to an element of |
| Ref | Expression |
|---|---|
| hashennnuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun1 3339 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | endom 6853 |
. . . . 5
| |
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | breq1 4046 |
. . . . 5
| |
| 6 | 5 | elrab 2928 |
. . . 4
|
| 7 | 2, 4, 6 | sylanbrc 417 |
. . 3
|
| 8 | breq1 4046 |
. . . . . . . . . . . 12
| |
| 9 | 8 | elrab 2928 |
. . . . . . . . . . 11
|
| 10 | 9 | biimpi 120 |
. . . . . . . . . 10
|
| 11 | 10 | adantl 277 |
. . . . . . . . 9
|
| 12 | 11 | simprd 114 |
. . . . . . . 8
|
| 13 | simplr 528 |
. . . . . . . . 9
| |
| 14 | 13 | ensymd 6874 |
. . . . . . . 8
|
| 15 | domentr 6882 |
. . . . . . . 8
| |
| 16 | 12, 14, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | 16 | adantr 276 |
. . . . . 6
|
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | simplll 533 |
. . . . . . 7
| |
| 20 | nndomo 6960 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . 6
|
| 22 | 17, 21 | mpbid 147 |
. . . . 5
|
| 23 | nnfi 6968 |
. . . . . . . 8
| |
| 24 | 23 | ad3antrrr 492 |
. . . . . . 7
|
| 25 | 14 | adantr 276 |
. . . . . . 7
|
| 26 | enfii 6970 |
. . . . . . 7
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | 12 | adantr 276 |
. . . . . . . 8
|
| 29 | elsni 3650 |
. . . . . . . . . 10
| |
| 30 | 29 | breq1d 4053 |
. . . . . . . . 9
|
| 31 | 30 | adantl 277 |
. . . . . . . 8
|
| 32 | 28, 31 | mpbid 147 |
. . . . . . 7
|
| 33 | infnfi 6991 |
. . . . . . 7
| |
| 34 | 32, 33 | syl 14 |
. . . . . 6
|
| 35 | 27, 34 | pm2.21dd 621 |
. . . . 5
|
| 36 | 11 | simpld 112 |
. . . . . 6
|
| 37 | elun 3313 |
. . . . . 6
| |
| 38 | 36, 37 | sylib 122 |
. . . . 5
|
| 39 | 22, 35, 38 | mpjaodan 799 |
. . . 4
|
| 40 | 39 | ralrimiva 2578 |
. . 3
|
| 41 | ssunieq 3882 |
. . 3
| |
| 42 | 7, 40, 41 | syl2anc 411 |
. 2
|
| 43 | 42 | eqcomd 2210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 |
| This theorem is referenced by: hashennn 10923 |
| Copyright terms: Public domain | W3C validator |