| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashennnuni | Unicode version | ||
| Description: The ordinal size of a set
equinumerous to an element of |
| Ref | Expression |
|---|---|
| hashennnuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun1 3330 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | endom 6822 |
. . . . 5
| |
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | breq1 4036 |
. . . . 5
| |
| 6 | 5 | elrab 2920 |
. . . 4
|
| 7 | 2, 4, 6 | sylanbrc 417 |
. . 3
|
| 8 | breq1 4036 |
. . . . . . . . . . . 12
| |
| 9 | 8 | elrab 2920 |
. . . . . . . . . . 11
|
| 10 | 9 | biimpi 120 |
. . . . . . . . . 10
|
| 11 | 10 | adantl 277 |
. . . . . . . . 9
|
| 12 | 11 | simprd 114 |
. . . . . . . 8
|
| 13 | simplr 528 |
. . . . . . . . 9
| |
| 14 | 13 | ensymd 6842 |
. . . . . . . 8
|
| 15 | domentr 6850 |
. . . . . . . 8
| |
| 16 | 12, 14, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | 16 | adantr 276 |
. . . . . 6
|
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | simplll 533 |
. . . . . . 7
| |
| 20 | nndomo 6925 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . 6
|
| 22 | 17, 21 | mpbid 147 |
. . . . 5
|
| 23 | nnfi 6933 |
. . . . . . . 8
| |
| 24 | 23 | ad3antrrr 492 |
. . . . . . 7
|
| 25 | 14 | adantr 276 |
. . . . . . 7
|
| 26 | enfii 6935 |
. . . . . . 7
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | 12 | adantr 276 |
. . . . . . . 8
|
| 29 | elsni 3640 |
. . . . . . . . . 10
| |
| 30 | 29 | breq1d 4043 |
. . . . . . . . 9
|
| 31 | 30 | adantl 277 |
. . . . . . . 8
|
| 32 | 28, 31 | mpbid 147 |
. . . . . . 7
|
| 33 | infnfi 6956 |
. . . . . . 7
| |
| 34 | 32, 33 | syl 14 |
. . . . . 6
|
| 35 | 27, 34 | pm2.21dd 621 |
. . . . 5
|
| 36 | 11 | simpld 112 |
. . . . . 6
|
| 37 | elun 3304 |
. . . . . 6
| |
| 38 | 36, 37 | sylib 122 |
. . . . 5
|
| 39 | 22, 35, 38 | mpjaodan 799 |
. . . 4
|
| 40 | 39 | ralrimiva 2570 |
. . 3
|
| 41 | ssunieq 3872 |
. . 3
| |
| 42 | 7, 40, 41 | syl2anc 411 |
. 2
|
| 43 | 42 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 |
| This theorem is referenced by: hashennn 10872 |
| Copyright terms: Public domain | W3C validator |