ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennnuni Unicode version

Theorem hashennnuni 10105
Description: The ordinal size of a set equinumerous to an element of  om is that element of  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashennnuni  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
Distinct variable groups:    y, A    y, N

Proof of Theorem hashennnuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elun1 3156 . . . . 5  |-  ( N  e.  om  ->  N  e.  ( om  u.  { om } ) )
21adantr 270 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  ( om  u.  { om } ) )
3 endom 6434 . . . . 5  |-  ( N 
~~  A  ->  N  ~<_  A )
43adantl 271 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  ~<_  A )
5 breq1 3825 . . . . 5  |-  ( y  =  N  ->  (
y  ~<_  A  <->  N  ~<_  A ) )
65elrab 2762 . . . 4  |-  ( N  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  <->  ( N  e.  ( om  u.  { om } )  /\  N  ~<_  A ) )
72, 4, 6sylanbrc 408 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
8 breq1 3825 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  ~<_  A  <->  z  ~<_  A ) )
98elrab 2762 . . . . . . . . . . 11  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  <->  ( z  e.  ( om  u.  { om } )  /\  z  ~<_  A ) )
109biimpi 118 . . . . . . . . . 10  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  (
z  e.  ( om  u.  { om }
)  /\  z  ~<_  A ) )
1110adantl 271 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  (
z  e.  ( om  u.  { om }
)  /\  z  ~<_  A ) )
1211simprd 112 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  z  ~<_  A )
13 simplr 497 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  N  ~~  A )
1413ensymd 6454 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  A  ~~  N )
15 domentr 6462 . . . . . . . 8  |-  ( ( z  ~<_  A  /\  A  ~~  N )  ->  z  ~<_  N )
1612, 14, 15syl2anc 403 . . . . . . 7  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  z  ~<_  N )
1716adantr 270 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  z  ~<_  N )
18 simpr 108 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  z  e.  om )
19 simplll 500 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  N  e.  om )
20 nndomo 6534 . . . . . . 7  |-  ( ( z  e.  om  /\  N  e.  om )  ->  ( z  ~<_  N  <->  z  C_  N ) )
2118, 19, 20syl2anc 403 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  ( z  ~<_  N  <->  z  C_  N ) )
2217, 21mpbid 145 . . . . 5  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  z  C_  N )
23 nnfi 6542 . . . . . . . 8  |-  ( N  e.  om  ->  N  e.  Fin )
2423ad3antrrr 476 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  N  e.  Fin )
2514adantr 270 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  A  ~~  N )
26 enfii 6544 . . . . . . 7  |-  ( ( N  e.  Fin  /\  A  ~~  N )  ->  A  e.  Fin )
2724, 25, 26syl2anc 403 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  A  e.  Fin )
2812adantr 270 . . . . . . . 8  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  z  ~<_  A )
29 elsni 3449 . . . . . . . . . 10  |-  ( z  e.  { om }  ->  z  =  om )
3029breq1d 3832 . . . . . . . . 9  |-  ( z  e.  { om }  ->  ( z  ~<_  A  <->  om  ~<_  A ) )
3130adantl 271 . . . . . . . 8  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  (
z  ~<_  A  <->  om  ~<_  A ) )
3228, 31mpbid 145 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  om  ~<_  A )
33 infnfi 6565 . . . . . . 7  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
3432, 33syl 14 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  -.  A  e.  Fin )
3527, 34pm2.21dd 583 . . . . 5  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  z  C_  N )
3611simpld 110 . . . . . 6  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  z  e.  ( om  u.  { om } ) )
37 elun 3130 . . . . . 6  |-  ( z  e.  ( om  u.  { om } )  <->  ( z  e.  om  \/  z  e. 
{ om } ) )
3836, 37sylib 120 . . . . 5  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  (
z  e.  om  \/  z  e.  { om } ) )
3922, 35, 38mpjaodan 745 . . . 4  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  z  C_  N )
4039ralrimiva 2442 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z 
C_  N )
41 ssunieq 3671 . . 3  |-  ( ( N  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  /\  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z 
C_  N )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
427, 40, 41syl2anc 403 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
4342eqcomd 2090 1  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    = wceq 1287    e. wcel 1436   A.wral 2355   {crab 2359    u. cun 2986    C_ wss 2988   {csn 3431   U.cuni 3638   class class class wbr 3822   omcom 4380    ~~ cen 6409    ~<_ cdom 6410   Fincfn 6411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-er 6246  df-en 6412  df-dom 6413  df-fin 6414
This theorem is referenced by:  hashennn  10106
  Copyright terms: Public domain W3C validator