Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashennnuni | Unicode version |
Description: The ordinal size of a set equinumerous to an element of is that element of . (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
hashennnuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun1 3289 | . . . . 5 | |
2 | 1 | adantr 274 | . . . 4 |
3 | endom 6729 | . . . . 5 | |
4 | 3 | adantl 275 | . . . 4 |
5 | breq1 3985 | . . . . 5 | |
6 | 5 | elrab 2882 | . . . 4 |
7 | 2, 4, 6 | sylanbrc 414 | . . 3 |
8 | breq1 3985 | . . . . . . . . . . . 12 | |
9 | 8 | elrab 2882 | . . . . . . . . . . 11 |
10 | 9 | biimpi 119 | . . . . . . . . . 10 |
11 | 10 | adantl 275 | . . . . . . . . 9 |
12 | 11 | simprd 113 | . . . . . . . 8 |
13 | simplr 520 | . . . . . . . . 9 | |
14 | 13 | ensymd 6749 | . . . . . . . 8 |
15 | domentr 6757 | . . . . . . . 8 | |
16 | 12, 14, 15 | syl2anc 409 | . . . . . . 7 |
17 | 16 | adantr 274 | . . . . . 6 |
18 | simpr 109 | . . . . . . 7 | |
19 | simplll 523 | . . . . . . 7 | |
20 | nndomo 6830 | . . . . . . 7 | |
21 | 18, 19, 20 | syl2anc 409 | . . . . . 6 |
22 | 17, 21 | mpbid 146 | . . . . 5 |
23 | nnfi 6838 | . . . . . . . 8 | |
24 | 23 | ad3antrrr 484 | . . . . . . 7 |
25 | 14 | adantr 274 | . . . . . . 7 |
26 | enfii 6840 | . . . . . . 7 | |
27 | 24, 25, 26 | syl2anc 409 | . . . . . 6 |
28 | 12 | adantr 274 | . . . . . . . 8 |
29 | elsni 3594 | . . . . . . . . . 10 | |
30 | 29 | breq1d 3992 | . . . . . . . . 9 |
31 | 30 | adantl 275 | . . . . . . . 8 |
32 | 28, 31 | mpbid 146 | . . . . . . 7 |
33 | infnfi 6861 | . . . . . . 7 | |
34 | 32, 33 | syl 14 | . . . . . 6 |
35 | 27, 34 | pm2.21dd 610 | . . . . 5 |
36 | 11 | simpld 111 | . . . . . 6 |
37 | elun 3263 | . . . . . 6 | |
38 | 36, 37 | sylib 121 | . . . . 5 |
39 | 22, 35, 38 | mpjaodan 788 | . . . 4 |
40 | 39 | ralrimiva 2539 | . . 3 |
41 | ssunieq 3822 | . . 3 | |
42 | 7, 40, 41 | syl2anc 409 | . 2 |
43 | 42 | eqcomd 2171 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wral 2444 crab 2448 cun 3114 wss 3116 csn 3576 cuni 3789 class class class wbr 3982 com 4567 cen 6704 cdom 6705 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 |
This theorem is referenced by: hashennn 10693 |
Copyright terms: Public domain | W3C validator |