ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennnuni Unicode version

Theorem hashennnuni 10996
Description: The ordinal size of a set equinumerous to an element of  om is that element of  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashennnuni  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
Distinct variable groups:    y, A    y, N

Proof of Theorem hashennnuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elun1 3371 . . . . 5  |-  ( N  e.  om  ->  N  e.  ( om  u.  { om } ) )
21adantr 276 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  ( om  u.  { om } ) )
3 endom 6912 . . . . 5  |-  ( N 
~~  A  ->  N  ~<_  A )
43adantl 277 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  ~<_  A )
5 breq1 4085 . . . . 5  |-  ( y  =  N  ->  (
y  ~<_  A  <->  N  ~<_  A ) )
65elrab 2959 . . . 4  |-  ( N  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  <->  ( N  e.  ( om  u.  { om } )  /\  N  ~<_  A ) )
72, 4, 6sylanbrc 417 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
8 breq1 4085 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  ~<_  A  <->  z  ~<_  A ) )
98elrab 2959 . . . . . . . . . . 11  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  <->  ( z  e.  ( om  u.  { om } )  /\  z  ~<_  A ) )
109biimpi 120 . . . . . . . . . 10  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  (
z  e.  ( om  u.  { om }
)  /\  z  ~<_  A ) )
1110adantl 277 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  (
z  e.  ( om  u.  { om }
)  /\  z  ~<_  A ) )
1211simprd 114 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  z  ~<_  A )
13 simplr 528 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  N  ~~  A )
1413ensymd 6933 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  A  ~~  N )
15 domentr 6941 . . . . . . . 8  |-  ( ( z  ~<_  A  /\  A  ~~  N )  ->  z  ~<_  N )
1612, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  z  ~<_  N )
1716adantr 276 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  z  ~<_  N )
18 simpr 110 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  z  e.  om )
19 simplll 533 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  N  e.  om )
20 nndomo 7021 . . . . . . 7  |-  ( ( z  e.  om  /\  N  e.  om )  ->  ( z  ~<_  N  <->  z  C_  N ) )
2118, 19, 20syl2anc 411 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  ( z  ~<_  N  <->  z  C_  N ) )
2217, 21mpbid 147 . . . . 5  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  om )  ->  z  C_  N )
23 nnfi 7030 . . . . . . . 8  |-  ( N  e.  om  ->  N  e.  Fin )
2423ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  N  e.  Fin )
2514adantr 276 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  A  ~~  N )
26 enfii 7032 . . . . . . 7  |-  ( ( N  e.  Fin  /\  A  ~~  N )  ->  A  e.  Fin )
2724, 25, 26syl2anc 411 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  A  e.  Fin )
2812adantr 276 . . . . . . . 8  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  z  ~<_  A )
29 elsni 3684 . . . . . . . . . 10  |-  ( z  e.  { om }  ->  z  =  om )
3029breq1d 4092 . . . . . . . . 9  |-  ( z  e.  { om }  ->  ( z  ~<_  A  <->  om  ~<_  A ) )
3130adantl 277 . . . . . . . 8  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  (
z  ~<_  A  <->  om  ~<_  A ) )
3228, 31mpbid 147 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  om  ~<_  A )
33 infnfi 7053 . . . . . . 7  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
3432, 33syl 14 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  -.  A  e.  Fin )
3527, 34pm2.21dd 623 . . . . 5  |-  ( ( ( ( N  e. 
om  /\  N  ~~  A )  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  /\  z  e.  { om } )  ->  z  C_  N )
3611simpld 112 . . . . . 6  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  z  e.  ( om  u.  { om } ) )
37 elun 3345 . . . . . 6  |-  ( z  e.  ( om  u.  { om } )  <->  ( z  e.  om  \/  z  e. 
{ om } ) )
3836, 37sylib 122 . . . . 5  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  (
z  e.  om  \/  z  e.  { om } ) )
3922, 35, 38mpjaodan 803 . . . 4  |-  ( ( ( N  e.  om  /\  N  ~~  A )  /\  z  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )  ->  z  C_  N )
4039ralrimiva 2603 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z 
C_  N )
41 ssunieq 3920 . . 3  |-  ( ( N  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  /\  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z 
C_  N )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
427, 40, 41syl2anc 411 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
4342eqcomd 2235 1  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512    u. cun 3195    C_ wss 3197   {csn 3666   U.cuni 3887   class class class wbr 4082   omcom 4681    ~~ cen 6883    ~<_ cdom 6884   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888
This theorem is referenced by:  hashennn  10997
  Copyright terms: Public domain W3C validator