Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucel | GIF version |
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
Ref | Expression |
---|---|
sucel | ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2494 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴) | |
2 | dfcleq 2159 | . . . 4 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴)) | |
3 | vex 2729 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | elsuc 4384 | . . . . . 6 ⊢ (𝑦 ∈ suc 𝐴 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
5 | 4 | bibi2i 226 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
6 | 5 | albii 1458 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
7 | 2, 6 | bitri 183 | . . 3 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
8 | 7 | rexbii 2473 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
9 | 1, 8 | bitri 183 | 1 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-suc 4349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |