![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucel | GIF version |
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
Ref | Expression |
---|---|
sucel | ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2400 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴) | |
2 | dfcleq 2077 | . . . 4 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴)) | |
3 | vex 2615 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | elsuc 4197 | . . . . . 6 ⊢ (𝑦 ∈ suc 𝐴 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
5 | 4 | bibi2i 225 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
6 | 5 | albii 1400 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
7 | 2, 6 | bitri 182 | . . 3 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
8 | 7 | rexbii 2379 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
9 | 1, 8 | bitri 182 | 1 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∨ wo 662 ∀wal 1283 = wceq 1285 ∈ wcel 1434 ∃wrex 2354 suc csuc 4156 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rex 2359 df-v 2614 df-un 2988 df-sn 3428 df-suc 4162 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |