![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucel | GIF version |
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
Ref | Expression |
---|---|
sucel | ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2505 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴) | |
2 | dfcleq 2171 | . . . 4 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴)) | |
3 | vex 2742 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | elsuc 4408 | . . . . . 6 ⊢ (𝑦 ∈ suc 𝐴 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
5 | 4 | bibi2i 227 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
6 | 5 | albii 1470 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
7 | 2, 6 | bitri 184 | . . 3 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
8 | 7 | rexbii 2484 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
9 | 1, 8 | bitri 184 | 1 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 708 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 suc csuc 4367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-suc 4373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |