ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucel GIF version

Theorem sucel 4425
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
sucel (suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem sucel
StepHypRef Expression
1 risset 2518 . 2 (suc 𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = suc 𝐴)
2 dfcleq 2183 . . . 4 (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ suc 𝐴))
3 vex 2755 . . . . . . 7 𝑦 ∈ V
43elsuc 4421 . . . . . 6 (𝑦 ∈ suc 𝐴 ↔ (𝑦𝐴𝑦 = 𝐴))
54bibi2i 227 . . . . 5 ((𝑦𝑥𝑦 ∈ suc 𝐴) ↔ (𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
65albii 1481 . . . 4 (∀𝑦(𝑦𝑥𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
72, 6bitri 184 . . 3 (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
87rexbii 2497 . 2 (∃𝑥𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
91, 8bitri 184 1 (suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2160  wrex 2469  suc csuc 4380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-sn 3613  df-suc 4386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator