| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucssel | GIF version | ||
| Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
| Ref | Expression |
|---|---|
| sucssel | ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg 4461 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
| 2 | ssel 3186 | . 2 ⊢ (suc 𝐴 ⊆ 𝐵 → (𝐴 ∈ suc 𝐴 → 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | syl5com 29 | 1 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ⊆ wss 3165 suc csuc 4410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-suc 4416 |
| This theorem is referenced by: ordelsuc 4551 sucpw1nss3 7329 3nsssucpw1 7330 bj-nnelirr 15753 |
| Copyright terms: Public domain | W3C validator |