ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucssel GIF version

Theorem sucssel 4469
Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
Assertion
Ref Expression
sucssel (𝐴𝑉 → (suc 𝐴𝐵𝐴𝐵))

Proof of Theorem sucssel
StepHypRef Expression
1 sucidg 4461 . 2 (𝐴𝑉𝐴 ∈ suc 𝐴)
2 ssel 3186 . 2 (suc 𝐴𝐵 → (𝐴 ∈ suc 𝐴𝐴𝐵))
31, 2syl5com 29 1 (𝐴𝑉 → (suc 𝐴𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wss 3165  suc csuc 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-suc 4416
This theorem is referenced by:  ordelsuc  4551  sucpw1nss3  7329  3nsssucpw1  7330  bj-nnelirr  15753
  Copyright terms: Public domain W3C validator