ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nss3 Unicode version

Theorem sucpw1nss3 7381
Description: Negated excluded middle implies that the successor of the power set of  1o is not a subset of  3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
sucpw1nss3  |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_  3o )

Proof of Theorem sucpw1nss3
StepHypRef Expression
1 pw1nel3 7377 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
2 pw1on 7372 . . 3  |-  ~P 1o  e.  On
3 sucssel 4489 . . 3  |-  ( ~P 1o  e.  On  ->  ( suc  ~P 1o  C_  3o  ->  ~P 1o  e.  3o ) )
42, 3ax-mp 5 . 2  |-  ( suc 
~P 1o  C_  3o  ->  ~P 1o  e.  3o )
51, 4nsyl 629 1  |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2178    C_ wss 3174   ~Pcpw 3626  EXMIDwem 4254   Oncon0 4428   suc csuc 4430   1oc1o 6518   3oc3o 6520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-tr 4159  df-exmid 4255  df-iord 4431  df-on 4433  df-suc 4436  df-1o 6525  df-2o 6526  df-3o 6527
This theorem is referenced by:  onntri45  7387
  Copyright terms: Public domain W3C validator