| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3nsssucpw1 | Unicode version | ||
| Description: Negated excluded middle
implies that  | 
| Ref | Expression | 
|---|---|
| 3nsssucpw1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3o 6476 | 
. . . . . 6
 | |
| 2 | 1 | sseq1i 3209 | 
. . . . 5
 | 
| 3 | 1lt2o 6500 | 
. . . . . . . . 9
 | |
| 4 | ssnel 4605 | 
. . . . . . . . 9
 | |
| 5 | 3, 4 | mt2 641 | 
. . . . . . . 8
 | 
| 6 | 2onn 6579 | 
. . . . . . . . . 10
 | |
| 7 | 6 | elexi 2775 | 
. . . . . . . . 9
 | 
| 8 | 7 | elpw 3611 | 
. . . . . . . 8
 | 
| 9 | 5, 8 | mtbir 672 | 
. . . . . . 7
 | 
| 10 | 9 | a1i 9 | 
. . . . . 6
 | 
| 11 | sucssel 4459 | 
. . . . . . . . 9
 | |
| 12 | 6, 11 | ax-mp 5 | 
. . . . . . . 8
 | 
| 13 | elsuci 4438 | 
. . . . . . . 8
 | |
| 14 | 12, 13 | syl 14 | 
. . . . . . 7
 | 
| 15 | 14 | orcomd 730 | 
. . . . . 6
 | 
| 16 | 10, 15 | ecased 1360 | 
. . . . 5
 | 
| 17 | 2, 16 | sylbi 121 | 
. . . 4
 | 
| 18 | 17 | eqcomd 2202 | 
. . 3
 | 
| 19 | exmidpweq 6970 | 
. . 3
 | |
| 20 | 18, 19 | sylibr 134 | 
. 2
 | 
| 21 | 20 | con3i 633 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-exmid 4228 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-1o 6474 df-2o 6475 df-3o 6476 | 
| This theorem is referenced by: onntri45 7308 | 
| Copyright terms: Public domain | W3C validator |