ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 Unicode version

Theorem 3nsssucpw1 7298
Description: Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6473 . . . . . 6  |-  3o  =  suc  2o
21sseq1i 3206 . . . . 5  |-  ( 3o  C_  suc  ~P 1o  <->  suc  2o  C_  suc  ~P 1o )
3 1lt2o 6497 . . . . . . . . 9  |-  1o  e.  2o
4 ssnel 4602 . . . . . . . . 9  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
53, 4mt2 641 . . . . . . . 8  |-  -.  2o  C_  1o
6 2onn 6576 . . . . . . . . . 10  |-  2o  e.  om
76elexi 2772 . . . . . . . . 9  |-  2o  e.  _V
87elpw 3608 . . . . . . . 8  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
95, 8mtbir 672 . . . . . . 7  |-  -.  2o  e.  ~P 1o
109a1i 9 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  -.  2o  e.  ~P 1o )
11 sucssel 4456 . . . . . . . . 9  |-  ( 2o  e.  om  ->  ( suc  2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o ) )
126, 11ax-mp 5 . . . . . . . 8  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o )
13 elsuci 4435 . . . . . . . 8  |-  ( 2o  e.  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1412, 13syl 14 . . . . . . 7  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1514orcomd 730 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  =  ~P 1o  \/  2o  e.  ~P 1o ) )
1610, 15ecased 1360 . . . . 5  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
172, 16sylbi 121 . . . 4  |-  ( 3o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
1817eqcomd 2199 . . 3  |-  ( 3o  C_  suc  ~P 1o  ->  ~P 1o  =  2o )
19 exmidpweq 6967 . . 3  |-  (EXMID  <->  ~P 1o  =  2o )
2018, 19sylibr 134 . 2  |-  ( 3o  C_  suc  ~P 1o  -> EXMID )
2120con3i 633 1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2164    C_ wss 3154   ~Pcpw 3602  EXMIDwem 4224   suc csuc 4397   omcom 4623   1oc1o 6464   2oc2o 6465   3oc3o 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-tr 4129  df-exmid 4225  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-1o 6471  df-2o 6472  df-3o 6473
This theorem is referenced by:  onntri45  7303
  Copyright terms: Public domain W3C validator