ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 Unicode version

Theorem 3nsssucpw1 7421
Description: Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6564 . . . . . 6  |-  3o  =  suc  2o
21sseq1i 3250 . . . . 5  |-  ( 3o  C_  suc  ~P 1o  <->  suc  2o  C_  suc  ~P 1o )
3 1lt2o 6588 . . . . . . . . 9  |-  1o  e.  2o
4 ssnel 4661 . . . . . . . . 9  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
53, 4mt2 643 . . . . . . . 8  |-  -.  2o  C_  1o
6 2onn 6667 . . . . . . . . . 10  |-  2o  e.  om
76elexi 2812 . . . . . . . . 9  |-  2o  e.  _V
87elpw 3655 . . . . . . . 8  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
95, 8mtbir 675 . . . . . . 7  |-  -.  2o  e.  ~P 1o
109a1i 9 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  -.  2o  e.  ~P 1o )
11 sucssel 4515 . . . . . . . . 9  |-  ( 2o  e.  om  ->  ( suc  2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o ) )
126, 11ax-mp 5 . . . . . . . 8  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o )
13 elsuci 4494 . . . . . . . 8  |-  ( 2o  e.  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1412, 13syl 14 . . . . . . 7  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1514orcomd 734 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  =  ~P 1o  \/  2o  e.  ~P 1o ) )
1610, 15ecased 1383 . . . . 5  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
172, 16sylbi 121 . . . 4  |-  ( 3o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
1817eqcomd 2235 . . 3  |-  ( 3o  C_  suc  ~P 1o  ->  ~P 1o  =  2o )
19 exmidpweq 7071 . . 3  |-  (EXMID  <->  ~P 1o  =  2o )
2018, 19sylibr 134 . 2  |-  ( 3o  C_  suc  ~P 1o  -> EXMID )
2120con3i 635 1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   ~Pcpw 3649  EXMIDwem 4278   suc csuc 4456   omcom 4682   1oc1o 6555   2oc2o 6556   3oc3o 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-exmid 4279  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-1o 6562  df-2o 6563  df-3o 6564
This theorem is referenced by:  onntri45  7426
  Copyright terms: Public domain W3C validator