ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 Unicode version

Theorem 3nsssucpw1 7192
Description: Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6386 . . . . . 6  |-  3o  =  suc  2o
21sseq1i 3168 . . . . 5  |-  ( 3o  C_  suc  ~P 1o  <->  suc  2o  C_  suc  ~P 1o )
3 1lt2o 6410 . . . . . . . . 9  |-  1o  e.  2o
4 ssnel 4546 . . . . . . . . 9  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
53, 4mt2 630 . . . . . . . 8  |-  -.  2o  C_  1o
6 2onn 6489 . . . . . . . . . 10  |-  2o  e.  om
76elexi 2738 . . . . . . . . 9  |-  2o  e.  _V
87elpw 3565 . . . . . . . 8  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
95, 8mtbir 661 . . . . . . 7  |-  -.  2o  e.  ~P 1o
109a1i 9 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  -.  2o  e.  ~P 1o )
11 sucssel 4402 . . . . . . . . 9  |-  ( 2o  e.  om  ->  ( suc  2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o ) )
126, 11ax-mp 5 . . . . . . . 8  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o )
13 elsuci 4381 . . . . . . . 8  |-  ( 2o  e.  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1412, 13syl 14 . . . . . . 7  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1514orcomd 719 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  =  ~P 1o  \/  2o  e.  ~P 1o ) )
1610, 15ecased 1339 . . . . 5  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
172, 16sylbi 120 . . . 4  |-  ( 3o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
1817eqcomd 2171 . . 3  |-  ( 3o  C_  suc  ~P 1o  ->  ~P 1o  =  2o )
19 exmidpweq 6875 . . 3  |-  (EXMID  <->  ~P 1o  =  2o )
2018, 19sylibr 133 . 2  |-  ( 3o  C_  suc  ~P 1o  -> EXMID )
2120con3i 622 1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698    = wceq 1343    e. wcel 2136    C_ wss 3116   ~Pcpw 3559  EXMIDwem 4173   suc csuc 4343   omcom 4567   1oc1o 6377   2oc2o 6378   3oc3o 6379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-exmid 4174  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-1o 6384  df-2o 6385  df-3o 6386
This theorem is referenced by:  onntri45  7197
  Copyright terms: Public domain W3C validator