ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 Unicode version

Theorem 3nsssucpw1 7348
Description: Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6504 . . . . . 6  |-  3o  =  suc  2o
21sseq1i 3219 . . . . 5  |-  ( 3o  C_  suc  ~P 1o  <->  suc  2o  C_  suc  ~P 1o )
3 1lt2o 6528 . . . . . . . . 9  |-  1o  e.  2o
4 ssnel 4617 . . . . . . . . 9  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
53, 4mt2 641 . . . . . . . 8  |-  -.  2o  C_  1o
6 2onn 6607 . . . . . . . . . 10  |-  2o  e.  om
76elexi 2784 . . . . . . . . 9  |-  2o  e.  _V
87elpw 3622 . . . . . . . 8  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
95, 8mtbir 673 . . . . . . 7  |-  -.  2o  e.  ~P 1o
109a1i 9 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  -.  2o  e.  ~P 1o )
11 sucssel 4471 . . . . . . . . 9  |-  ( 2o  e.  om  ->  ( suc  2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o ) )
126, 11ax-mp 5 . . . . . . . 8  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o )
13 elsuci 4450 . . . . . . . 8  |-  ( 2o  e.  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1412, 13syl 14 . . . . . . 7  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1514orcomd 731 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  =  ~P 1o  \/  2o  e.  ~P 1o ) )
1610, 15ecased 1362 . . . . 5  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
172, 16sylbi 121 . . . 4  |-  ( 3o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
1817eqcomd 2211 . . 3  |-  ( 3o  C_  suc  ~P 1o  ->  ~P 1o  =  2o )
19 exmidpweq 7006 . . 3  |-  (EXMID  <->  ~P 1o  =  2o )
2018, 19sylibr 134 . 2  |-  ( 3o  C_  suc  ~P 1o  -> EXMID )
2120con3i 633 1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2176    C_ wss 3166   ~Pcpw 3616  EXMIDwem 4238   suc csuc 4412   omcom 4638   1oc1o 6495   2oc2o 6496   3oc3o 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4143  df-exmid 4239  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-1o 6502  df-2o 6503  df-3o 6504
This theorem is referenced by:  onntri45  7353
  Copyright terms: Public domain W3C validator