ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 Unicode version

Theorem 3nsssucpw1 7382
Description: Negated excluded middle implies that  3o is not a subset of the successor of the power set of 
1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6527 . . . . . 6  |-  3o  =  suc  2o
21sseq1i 3227 . . . . 5  |-  ( 3o  C_  suc  ~P 1o  <->  suc  2o  C_  suc  ~P 1o )
3 1lt2o 6551 . . . . . . . . 9  |-  1o  e.  2o
4 ssnel 4635 . . . . . . . . 9  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
53, 4mt2 641 . . . . . . . 8  |-  -.  2o  C_  1o
6 2onn 6630 . . . . . . . . . 10  |-  2o  e.  om
76elexi 2789 . . . . . . . . 9  |-  2o  e.  _V
87elpw 3632 . . . . . . . 8  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
95, 8mtbir 673 . . . . . . 7  |-  -.  2o  e.  ~P 1o
109a1i 9 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  -.  2o  e.  ~P 1o )
11 sucssel 4489 . . . . . . . . 9  |-  ( 2o  e.  om  ->  ( suc  2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o ) )
126, 11ax-mp 5 . . . . . . . 8  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  e.  suc  ~P 1o )
13 elsuci 4468 . . . . . . . 8  |-  ( 2o  e.  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1412, 13syl 14 . . . . . . 7  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  e.  ~P 1o  \/  2o  =  ~P 1o ) )
1514orcomd 731 . . . . . 6  |-  ( suc 
2o  C_  suc  ~P 1o  ->  ( 2o  =  ~P 1o  \/  2o  e.  ~P 1o ) )
1610, 15ecased 1362 . . . . 5  |-  ( suc 
2o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
172, 16sylbi 121 . . . 4  |-  ( 3o  C_  suc  ~P 1o  ->  2o  =  ~P 1o )
1817eqcomd 2213 . . 3  |-  ( 3o  C_  suc  ~P 1o  ->  ~P 1o  =  2o )
19 exmidpweq 7032 . . 3  |-  (EXMID  <->  ~P 1o  =  2o )
2018, 19sylibr 134 . 2  |-  ( 3o  C_  suc  ~P 1o  -> EXMID )
2120con3i 633 1  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178    C_ wss 3174   ~Pcpw 3626  EXMIDwem 4254   suc csuc 4430   omcom 4656   1oc1o 6518   2oc2o 6519   3oc3o 6520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-tr 4159  df-exmid 4255  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-1o 6525  df-2o 6526  df-3o 6527
This theorem is referenced by:  onntri45  7387
  Copyright terms: Public domain W3C validator