Proof of Theorem lcmneg
Step | Hyp | Ref
| Expression |
1 | | lcm0val 12019 |
. . . . . . . 8
lcm |
2 | | znegcl 9243 |
. . . . . . . . 9
|
3 | | lcm0val 12019 |
. . . . . . . . 9
lcm
|
4 | 2, 3 | syl 14 |
. . . . . . . 8
lcm |
5 | 1, 4 | eqtr4d 2206 |
. . . . . . 7
lcm lcm
|
6 | 5 | ad2antlr 486 |
. . . . . 6
lcm lcm
|
7 | | oveq2 5861 |
. . . . . . . 8
lcm lcm |
8 | | oveq2 5861 |
. . . . . . . 8
lcm lcm |
9 | 7, 8 | eqeq12d 2185 |
. . . . . . 7
lcm lcm lcm lcm |
10 | 9 | adantl 275 |
. . . . . 6
lcm lcm
lcm lcm |
11 | 6, 10 | mpbird 166 |
. . . . 5
lcm lcm |
12 | | lcmcom 12018 |
. . . . . . 7
lcm lcm |
13 | | lcmcom 12018 |
. . . . . . . 8
lcm lcm |
14 | 2, 13 | sylan2 284 |
. . . . . . 7
lcm lcm |
15 | 12, 14 | eqeq12d 2185 |
. . . . . 6
lcm lcm
lcm lcm |
16 | 15 | adantr 274 |
. . . . 5
lcm lcm
lcm lcm |
17 | 11, 16 | mpbird 166 |
. . . 4
lcm lcm |
18 | | neg0 8165 |
. . . . . . . 8
|
19 | 18 | oveq2i 5864 |
. . . . . . 7
lcm lcm |
20 | 19 | eqcomi 2174 |
. . . . . 6
lcm lcm |
21 | | oveq2 5861 |
. . . . . 6
lcm lcm |
22 | | negeq 8112 |
. . . . . . 7
|
23 | 22 | oveq2d 5869 |
. . . . . 6
lcm lcm |
24 | 20, 21, 23 | 3eqtr4a 2229 |
. . . . 5
lcm lcm |
25 | 24 | adantl 275 |
. . . 4
lcm lcm |
26 | 17, 25 | jaodan 792 |
. . 3
lcm lcm |
27 | | dvdslcm 12023 |
. . . . . . . 8
lcm lcm |
28 | 2, 27 | sylan2 284 |
. . . . . . 7
lcm lcm |
29 | | simpr 109 |
. . . . . . . . 9
|
30 | | lcmcl 12026 |
. . . . . . . . . . 11
lcm |
31 | 2, 30 | sylan2 284 |
. . . . . . . . . 10
lcm |
32 | 31 | nn0zd 9332 |
. . . . . . . . 9
lcm |
33 | | negdvdsb 11769 |
. . . . . . . . 9
lcm lcm
lcm |
34 | 29, 32, 33 | syl2anc 409 |
. . . . . . . 8
lcm
lcm |
35 | 34 | anbi2d 461 |
. . . . . . 7
lcm lcm lcm lcm |
36 | 28, 35 | mpbird 166 |
. . . . . 6
lcm lcm |
37 | 36 | adantr 274 |
. . . . 5
lcm lcm |
38 | | zcn 9217 |
. . . . . . . . . . . . 13
|
39 | 38 | negeq0d 8222 |
. . . . . . . . . . . 12
|
40 | 39 | orbi2d 785 |
. . . . . . . . . . 11
|
41 | 40 | notbid 662 |
. . . . . . . . . 10
|
42 | 41 | biimpa 294 |
. . . . . . . . 9
|
43 | 42 | adantll 473 |
. . . . . . . 8
|
44 | | lcmn0cl 12022 |
. . . . . . . . 9
lcm |
45 | 2, 44 | sylanl2 401 |
. . . . . . . 8
lcm |
46 | 43, 45 | syldan 280 |
. . . . . . 7
lcm |
47 | | simpl 108 |
. . . . . . 7
|
48 | | 3anass 977 |
. . . . . . 7
lcm
lcm |
49 | 46, 47, 48 | sylanbrc 415 |
. . . . . 6
lcm
|
50 | | simpr 109 |
. . . . . 6
|
51 | | lcmledvds 12024 |
. . . . . 6
lcm
lcm lcm lcm lcm |
52 | 49, 50, 51 | syl2anc 409 |
. . . . 5
lcm
lcm lcm
lcm |
53 | 37, 52 | mpd 13 |
. . . 4
lcm
lcm |
54 | | dvdslcm 12023 |
. . . . . 6
lcm lcm |
55 | 54 | adantr 274 |
. . . . 5
lcm
lcm |
56 | | simplr 525 |
. . . . . . . 8
|
57 | | lcmn0cl 12022 |
. . . . . . . . 9
lcm |
58 | 57 | nnzd 9333 |
. . . . . . . 8
lcm |
59 | | negdvdsb 11769 |
. . . . . . . 8
lcm lcm lcm |
60 | 56, 58, 59 | syl2anc 409 |
. . . . . . 7
lcm lcm |
61 | 60 | anbi2d 461 |
. . . . . 6
lcm
lcm
lcm lcm |
62 | | lcmledvds 12024 |
. . . . . . . . . 10
lcm
lcm lcm
lcm lcm |
63 | 62 | ex 114 |
. . . . . . . . 9
lcm
lcm
lcm
lcm lcm |
64 | 2, 63 | syl3an3 1268 |
. . . . . . . 8
lcm
lcm
lcm
lcm lcm |
65 | 64 | 3expib 1201 |
. . . . . . 7
lcm
lcm
lcm
lcm lcm |
66 | 57, 47, 43, 65 | syl3c 63 |
. . . . . 6
lcm
lcm
lcm lcm |
67 | 61, 66 | sylbid 149 |
. . . . 5
lcm
lcm lcm
lcm |
68 | 55, 67 | mpd 13 |
. . . 4
lcm
lcm |
69 | | lcmcl 12026 |
. . . . . . 7
lcm |
70 | 69 | nn0red 9189 |
. . . . . 6
lcm |
71 | 30 | nn0red 9189 |
. . . . . . 7
lcm |
72 | 2, 71 | sylan2 284 |
. . . . . 6
lcm |
73 | 70, 72 | letri3d 8035 |
. . . . 5
lcm lcm
lcm lcm
lcm lcm |
74 | 73 | adantr 274 |
. . . 4
lcm lcm
lcm lcm
lcm lcm |
75 | 53, 68, 74 | mpbir2and 939 |
. . 3
lcm lcm |
76 | | lcmmndc 12016 |
. . . 4
DECID |
77 | | exmiddc 831 |
. . . 4
DECID
|
78 | 76, 77 | syl 14 |
. . 3
|
79 | 26, 75, 78 | mpjaodan 793 |
. 2
lcm lcm |
80 | 79 | eqcomd 2176 |
1
lcm lcm |