ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmneg Unicode version

Theorem lcmneg 11595
Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmneg  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( M lcm 
N ) )

Proof of Theorem lcmneg
StepHypRef Expression
1 lcm0val 11586 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
2 znegcl 8983 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
3 lcm0val 11586 . . . . . . . . 9  |-  ( -u N  e.  ZZ  ->  (
-u N lcm  0 )  =  0 )
42, 3syl 14 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( -u N lcm  0 )  =  0 )
51, 4eqtr4d 2148 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  (
-u N lcm  0 ) )
65ad2antlr 478 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( N lcm  0 )  =  (
-u N lcm  0 ) )
7 oveq2 5734 . . . . . . . 8  |-  ( M  =  0  ->  ( N lcm  M )  =  ( N lcm  0 ) )
8 oveq2 5734 . . . . . . . 8  |-  ( M  =  0  ->  ( -u N lcm  M )  =  ( -u N lcm  0
) )
97, 8eqeq12d 2127 . . . . . . 7  |-  ( M  =  0  ->  (
( N lcm  M )  =  ( -u N lcm  M )  <->  ( N lcm  0
)  =  ( -u N lcm  0 ) ) )
109adantl 273 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( N lcm  M )  =  (
-u N lcm  M )  <->  ( N lcm  0 )  =  ( -u N lcm  0
) ) )
116, 10mpbird 166 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( N lcm  M )  =  ( -u N lcm  M ) )
12 lcmcom 11585 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  ( N lcm  M
) )
13 lcmcom 11585 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( -u N lcm  M ) )
142, 13sylan2 282 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( -u N lcm  M ) )
1512, 14eqeq12d 2127 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M lcm  -u N )  <->  ( N lcm  M )  =  ( -u N lcm  M ) ) )
1615adantr 272 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  =  ( M lcm  -u N )  <->  ( N lcm  M )  =  ( -u N lcm  M ) ) )
1711, 16mpbird 166 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
18 neg0 7925 . . . . . . . 8  |-  -u 0  =  0
1918oveq2i 5737 . . . . . . 7  |-  ( M lcm  -u 0 )  =  ( M lcm  0 )
2019eqcomi 2117 . . . . . 6  |-  ( M lcm  0 )  =  ( M lcm  -u 0 )
21 oveq2 5734 . . . . . 6  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
22 negeq 7872 . . . . . . 7  |-  ( N  =  0  ->  -u N  =  -u 0 )
2322oveq2d 5742 . . . . . 6  |-  ( N  =  0  ->  ( M lcm  -u N )  =  ( M lcm  -u 0
) )
2420, 21, 233eqtr4a 2171 . . . . 5  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
2524adantl 273 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
2617, 25jaodan 769 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  =  ( M lcm  -u N
) )
27 dvdslcm 11590 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) )
282, 27sylan2 282 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) )
29 simpr 109 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
30 lcmcl 11593 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  NN0 )
312, 30sylan2 282 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  NN0 )
3231nn0zd 9069 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  ZZ )
33 negdvdsb 11351 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( M lcm  -u N )  e.  ZZ )  -> 
( N  ||  ( M lcm  -u N )  <->  -u N  ||  ( M lcm  -u N ) ) )
3429, 32, 33syl2anc 406 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  ( M lcm  -u N )  <->  -u N  ||  ( M lcm  -u N ) ) )
3534anbi2d 457 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N ) )  <-> 
( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) ) )
3628, 35mpbird 166 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N
) ) )
3736adantr 272 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N ) ) )
38 zcn 8957 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  CC )
3938negeq0d 7982 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  -u N  =  0 ) )
4039orbi2d 762 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( M  =  0  \/  N  =  0 )  <->  ( M  =  0  \/  -u N  =  0 ) ) )
4140notbid 639 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( -.  ( M  =  0  \/  N  =  0 )  <->  -.  ( M  =  0  \/  -u N  =  0 ) ) )
4241biimpa 292 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  -u N  =  0 ) )
4342adantll 465 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  -u N  =  0 ) )
44 lcmn0cl 11589 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
452, 44sylanl2 398 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
4643, 45syldan 278 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
47 simpl 108 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
48 3anass 947 . . . . . . 7  |-  ( ( ( M lcm  -u N
)  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( M lcm  -u N )  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )
4946, 47, 48sylanbrc 411 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm  -u N )  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )
)
50 simpr 109 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  N  =  0 ) )
51 lcmledvds 11591 . . . . . 6  |-  ( ( ( ( M lcm  -u N
)  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  ->  (
( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N
) )  ->  ( M lcm  N )  <_  ( M lcm  -u N ) ) )
5249, 50, 51syl2anc 406 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  -u N
)  /\  N  ||  ( M lcm  -u N ) )  ->  ( M lcm  N
)  <_  ( M lcm  -u N ) ) )
5337, 52mpd 13 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  <_  ( M lcm  -u N ) )
54 dvdslcm 11590 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
5554adantr 272 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) )
56 simplr 502 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  ZZ )
57 lcmn0cl 11589 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  NN )
5857nnzd 9070 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  ZZ )
59 negdvdsb 11351 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( M lcm  N )  e.  ZZ )  ->  ( N  ||  ( M lcm  N
)  <->  -u N  ||  ( M lcm  N ) ) )
6056, 58, 59syl2anc 406 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( N  ||  ( M lcm  N )  <->  -u N  ||  ( M lcm 
N ) ) )
6160anbi2d 457 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  N  ||  ( M lcm  N ) )  <->  ( M  ||  ( M lcm  N )  /\  -u N  ||  ( M lcm  N ) ) ) )
62 lcmledvds 11591 . . . . . . . . . 10  |-  ( ( ( ( M lcm  N
)  e.  NN  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  (
( M  ||  ( M lcm  N )  /\  -u N  ||  ( M lcm  N ) )  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) )
6362ex 114 . . . . . . . . 9  |-  ( ( ( M lcm  N )  e.  NN  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) )
642, 63syl3an3 1232 . . . . . . . 8  |-  ( ( ( M lcm  N )  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) )
65643expib 1165 . . . . . . 7  |-  ( ( M lcm  N )  e.  NN  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) ) )
6657, 47, 43, 65syl3c 63 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) )
6761, 66sylbid 149 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  N  ||  ( M lcm  N ) )  -> 
( M lcm  -u N
)  <_  ( M lcm  N ) ) )
6855, 67mpd 13 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  -u N
)  <_  ( M lcm  N ) )
69 lcmcl 11593 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
7069nn0red 8929 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  RR )
7130nn0red 8929 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  RR )
722, 71sylan2 282 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  RR )
7370, 72letri3d 7796 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M lcm  -u N )  <->  ( ( M lcm  N )  <_  ( M lcm  -u N )  /\  ( M lcm  -u N )  <_  ( M lcm  N
) ) ) )
7473adantr 272 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  =  ( M lcm  -u N )  <->  ( ( M lcm  N )  <_  ( M lcm  -u N )  /\  ( M lcm  -u N )  <_  ( M lcm  N
) ) ) )
7553, 68, 74mpbir2and 909 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  =  ( M lcm  -u N ) )
76 lcmmndc 11583 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
77 exmiddc 804 . . . 4  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7876, 77syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7926, 75, 78mpjaodan 770 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  ( M lcm  -u N
) )
8079eqcomd 2118 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( M lcm 
N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680  DECID wdc 802    /\ w3a 943    = wceq 1312    e. wcel 1461   class class class wbr 3893  (class class class)co 5726   RRcr 7540   0cc0 7541    <_ cle 7719   -ucneg 7851   NNcn 8624   NN0cn0 8875   ZZcz 8952    || cdvds 11335   lcm clcm 11581
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658  ax-caucvg 7659
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-isom 5088  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-sup 6821  df-inf 6822  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-q 9308  df-rp 9338  df-fz 9678  df-fzo 9807  df-fl 9930  df-mod 9983  df-seqfrec 10106  df-exp 10180  df-cj 10501  df-re 10502  df-im 10503  df-rsqrt 10656  df-abs 10657  df-dvds 11336  df-lcm 11582
This theorem is referenced by:  neglcm  11596  lcmabs  11597
  Copyright terms: Public domain W3C validator