Proof of Theorem lcmneg
Step | Hyp | Ref
| Expression |
1 | | lcm0val 11586 |
. . . . . . . 8
  lcm    |
2 | | znegcl 8983 |
. . . . . . . . 9
    |
3 | | lcm0val 11586 |
. . . . . . . . 9
 
  lcm
   |
4 | 2, 3 | syl 14 |
. . . . . . . 8
   lcm    |
5 | 1, 4 | eqtr4d 2148 |
. . . . . . 7
  lcm    lcm
   |
6 | 5 | ad2antlr 478 |
. . . . . 6
    
 lcm    lcm
   |
7 | | oveq2 5734 |
. . . . . . . 8
  lcm   lcm    |
8 | | oveq2 5734 |
. . . . . . . 8
   lcm    lcm    |
9 | 7, 8 | eqeq12d 2127 |
. . . . . . 7
   lcm    lcm   lcm    lcm     |
10 | 9 | adantl 273 |
. . . . . 6
    
  lcm    lcm
  lcm    lcm     |
11 | 6, 10 | mpbird 166 |
. . . . 5
    
 lcm    lcm    |
12 | | lcmcom 11585 |
. . . . . . 7
 
  lcm   lcm    |
13 | | lcmcom 11585 |
. . . . . . . 8
     lcm     lcm    |
14 | 2, 13 | sylan2 282 |
. . . . . . 7
 
  lcm     lcm    |
15 | 12, 14 | eqeq12d 2127 |
. . . . . 6
 
   lcm   lcm  
 lcm    lcm     |
16 | 15 | adantr 272 |
. . . . 5
    
  lcm   lcm  
 lcm    lcm     |
17 | 11, 16 | mpbird 166 |
. . . 4
    
 lcm   lcm     |
18 | | neg0 7925 |
. . . . . . . 8
  |
19 | 18 | oveq2i 5737 |
. . . . . . 7
 lcm    lcm   |
20 | 19 | eqcomi 2117 |
. . . . . 6
 lcm   lcm    |
21 | | oveq2 5734 |
. . . . . 6
  lcm   lcm    |
22 | | negeq 7872 |
. . . . . . 7
     |
23 | 22 | oveq2d 5742 |
. . . . . 6
  lcm    lcm     |
24 | 20, 21, 23 | 3eqtr4a 2171 |
. . . . 5
  lcm   lcm     |
25 | 24 | adantl 273 |
. . . 4
    
 lcm   lcm     |
26 | 17, 25 | jaodan 769 |
. . 3
        lcm   lcm     |
27 | | dvdslcm 11590 |
. . . . . . . 8
     
lcm     lcm      |
28 | 2, 27 | sylan2 282 |
. . . . . . 7
 
   lcm     lcm      |
29 | | simpr 109 |
. . . . . . . . 9
 
   |
30 | | lcmcl 11593 |
. . . . . . . . . . 11
     lcm     |
31 | 2, 30 | sylan2 282 |
. . . . . . . . . 10
 
  lcm     |
32 | 31 | nn0zd 9069 |
. . . . . . . . 9
 
  lcm     |
33 | | negdvdsb 11351 |
. . . . . . . . 9
  
lcm      lcm  
 
lcm      |
34 | 29, 32, 33 | syl2anc 406 |
. . . . . . . 8
 
   lcm  
 
lcm      |
35 | 34 | anbi2d 457 |
. . . . . . 7
 
   
lcm    lcm      lcm     lcm       |
36 | 28, 35 | mpbird 166 |
. . . . . 6
 
   lcm    lcm      |
37 | 36 | adantr 272 |
. . . . 5
        
lcm    lcm      |
38 | | zcn 8957 |
. . . . . . . . . . . . 13
   |
39 | 38 | negeq0d 7982 |
. . . . . . . . . . . 12
 
    |
40 | 39 | orbi2d 762 |
. . . . . . . . . . 11
          |
41 | 40 | notbid 639 |
. . . . . . . . . 10
   
      |
42 | 41 | biimpa 292 |
. . . . . . . . 9
     
    |
43 | 42 | adantll 465 |
. . . . . . . 8
      
     |
44 | | lcmn0cl 11589 |
. . . . . . . . 9
   
      lcm     |
45 | 2, 44 | sylanl2 398 |
. . . . . . . 8
         lcm     |
46 | 43, 45 | syldan 278 |
. . . . . . 7
        lcm     |
47 | | simpl 108 |
. . . . . . 7
           |
48 | | 3anass 947 |
. . . . . . 7
   lcm  

  lcm        |
49 | 46, 47, 48 | sylanbrc 411 |
. . . . . 6
         lcm  
   |
50 | | simpr 109 |
. . . . . 6
      
    |
51 | | lcmledvds 11591 |
. . . . . 6
    lcm  
 
     lcm    lcm     lcm   lcm      |
52 | 49, 50, 51 | syl2anc 406 |
. . . . 5
          lcm  
 lcm     lcm 
 lcm      |
53 | 37, 52 | mpd 13 |
. . . 4
        lcm 
 lcm     |
54 | | dvdslcm 11590 |
. . . . . 6
 
   lcm   lcm     |
55 | 54 | adantr 272 |
. . . . 5
        
lcm 
 lcm     |
56 | | simplr 502 |
. . . . . . . 8
         |
57 | | lcmn0cl 11589 |
. . . . . . . . 9
        lcm    |
58 | 57 | nnzd 9070 |
. . . . . . . 8
        lcm    |
59 | | negdvdsb 11351 |
. . . . . . . 8
  
lcm     lcm    lcm     |
60 | 56, 58, 59 | syl2anc 406 |
. . . . . . 7
        
lcm    lcm     |
61 | 60 | anbi2d 457 |
. . . . . 6
          lcm 
 lcm  
  lcm    lcm      |
62 | | lcmledvds 11591 |
. . . . . . . . . 10
    lcm 
  
      lcm    lcm  
 lcm    lcm     |
63 | 62 | ex 114 |
. . . . . . . . 9
   lcm       
   lcm 
 
lcm  
 lcm    lcm      |
64 | 2, 63 | syl3an3 1232 |
. . . . . . . 8
   lcm      
   lcm 
 
lcm  
 lcm    lcm      |
65 | 64 | 3expib 1165 |
. . . . . . 7
  lcm 
 
    
   lcm 
 
lcm  
 lcm    lcm       |
66 | 57, 47, 43, 65 | syl3c 63 |
. . . . . 6
          lcm 
 
lcm  
 lcm    lcm     |
67 | 61, 66 | sylbid 149 |
. . . . 5
          lcm 
 lcm    lcm  
 lcm     |
68 | 55, 67 | mpd 13 |
. . . 4
        lcm  
 lcm    |
69 | | lcmcl 11593 |
. . . . . . 7
 
  lcm    |
70 | 69 | nn0red 8929 |
. . . . . 6
 
  lcm    |
71 | 30 | nn0red 8929 |
. . . . . . 7
     lcm     |
72 | 2, 71 | sylan2 282 |
. . . . . 6
 
  lcm     |
73 | 70, 72 | letri3d 7796 |
. . . . 5
 
   lcm   lcm  
  lcm   lcm   
lcm    lcm      |
74 | 73 | adantr 272 |
. . . 4
         lcm   lcm  
  lcm   lcm   
lcm    lcm      |
75 | 53, 68, 74 | mpbir2and 909 |
. . 3
        lcm   lcm     |
76 | | lcmmndc 11583 |
. . . 4
 
 DECID     |
77 | | exmiddc 804 |
. . . 4
DECID      
    |
78 | 76, 77 | syl 14 |
. . 3
 
    
    |
79 | 26, 75, 78 | mpjaodan 770 |
. 2
 
  lcm   lcm     |
80 | 79 | eqcomd 2118 |
1
 
  lcm    lcm    |