ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmneg Unicode version

Theorem lcmneg 12006
Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmneg  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( M lcm 
N ) )

Proof of Theorem lcmneg
StepHypRef Expression
1 lcm0val 11997 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
2 znegcl 9222 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
3 lcm0val 11997 . . . . . . . . 9  |-  ( -u N  e.  ZZ  ->  (
-u N lcm  0 )  =  0 )
42, 3syl 14 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( -u N lcm  0 )  =  0 )
51, 4eqtr4d 2201 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  (
-u N lcm  0 ) )
65ad2antlr 481 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( N lcm  0 )  =  (
-u N lcm  0 ) )
7 oveq2 5850 . . . . . . . 8  |-  ( M  =  0  ->  ( N lcm  M )  =  ( N lcm  0 ) )
8 oveq2 5850 . . . . . . . 8  |-  ( M  =  0  ->  ( -u N lcm  M )  =  ( -u N lcm  0
) )
97, 8eqeq12d 2180 . . . . . . 7  |-  ( M  =  0  ->  (
( N lcm  M )  =  ( -u N lcm  M )  <->  ( N lcm  0
)  =  ( -u N lcm  0 ) ) )
109adantl 275 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( N lcm  M )  =  (
-u N lcm  M )  <->  ( N lcm  0 )  =  ( -u N lcm  0
) ) )
116, 10mpbird 166 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( N lcm  M )  =  ( -u N lcm  M ) )
12 lcmcom 11996 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  ( N lcm  M
) )
13 lcmcom 11996 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( -u N lcm  M ) )
142, 13sylan2 284 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( -u N lcm  M ) )
1512, 14eqeq12d 2180 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M lcm  -u N )  <->  ( N lcm  M )  =  ( -u N lcm  M ) ) )
1615adantr 274 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( ( M lcm  N )  =  ( M lcm  -u N )  <->  ( N lcm  M )  =  ( -u N lcm  M ) ) )
1711, 16mpbird 166 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
18 neg0 8144 . . . . . . . 8  |-  -u 0  =  0
1918oveq2i 5853 . . . . . . 7  |-  ( M lcm  -u 0 )  =  ( M lcm  0 )
2019eqcomi 2169 . . . . . 6  |-  ( M lcm  0 )  =  ( M lcm  -u 0 )
21 oveq2 5850 . . . . . 6  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
22 negeq 8091 . . . . . . 7  |-  ( N  =  0  ->  -u N  =  -u 0 )
2322oveq2d 5858 . . . . . 6  |-  ( N  =  0  ->  ( M lcm  -u N )  =  ( M lcm  -u 0
) )
2420, 21, 233eqtr4a 2225 . . . . 5  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
2524adantl 275 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  ( M lcm  -u N ) )
2617, 25jaodan 787 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  =  ( M lcm  -u N
) )
27 dvdslcm 12001 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) )
282, 27sylan2 284 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) )
29 simpr 109 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
30 lcmcl 12004 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  NN0 )
312, 30sylan2 284 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  NN0 )
3231nn0zd 9311 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  ZZ )
33 negdvdsb 11747 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( M lcm  -u N )  e.  ZZ )  -> 
( N  ||  ( M lcm  -u N )  <->  -u N  ||  ( M lcm  -u N ) ) )
3429, 32, 33syl2anc 409 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  ( M lcm  -u N )  <->  -u N  ||  ( M lcm  -u N ) ) )
3534anbi2d 460 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N ) )  <-> 
( M  ||  ( M lcm  -u N )  /\  -u N  ||  ( M lcm  -u N ) ) ) )
3628, 35mpbird 166 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N
) ) )
3736adantr 274 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N ) ) )
38 zcn 9196 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  CC )
3938negeq0d 8201 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  -u N  =  0 ) )
4039orbi2d 780 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( M  =  0  \/  N  =  0 )  <->  ( M  =  0  \/  -u N  =  0 ) ) )
4140notbid 657 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( -.  ( M  =  0  \/  N  =  0 )  <->  -.  ( M  =  0  \/  -u N  =  0 ) ) )
4241biimpa 294 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  -u N  =  0 ) )
4342adantll 468 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  -u N  =  0 ) )
44 lcmn0cl 12000 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
452, 44sylanl2 401 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
4643, 45syldan 280 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  -u N
)  e.  NN )
47 simpl 108 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
48 3anass 972 . . . . . . 7  |-  ( ( ( M lcm  -u N
)  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( M lcm  -u N )  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )
4946, 47, 48sylanbrc 414 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm  -u N )  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )
)
50 simpr 109 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  N  =  0 ) )
51 lcmledvds 12002 . . . . . 6  |-  ( ( ( ( M lcm  -u N
)  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  ->  (
( M  ||  ( M lcm  -u N )  /\  N  ||  ( M lcm  -u N
) )  ->  ( M lcm  N )  <_  ( M lcm  -u N ) ) )
5249, 50, 51syl2anc 409 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  -u N
)  /\  N  ||  ( M lcm  -u N ) )  ->  ( M lcm  N
)  <_  ( M lcm  -u N ) ) )
5337, 52mpd 13 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  <_  ( M lcm  -u N ) )
54 dvdslcm 12001 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
5554adantr 274 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) )
56 simplr 520 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  ZZ )
57 lcmn0cl 12000 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  NN )
5857nnzd 9312 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  ZZ )
59 negdvdsb 11747 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( M lcm  N )  e.  ZZ )  ->  ( N  ||  ( M lcm  N
)  <->  -u N  ||  ( M lcm  N ) ) )
6056, 58, 59syl2anc 409 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( N  ||  ( M lcm  N )  <->  -u N  ||  ( M lcm 
N ) ) )
6160anbi2d 460 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  N  ||  ( M lcm  N ) )  <->  ( M  ||  ( M lcm  N )  /\  -u N  ||  ( M lcm  N ) ) ) )
62 lcmledvds 12002 . . . . . . . . . 10  |-  ( ( ( ( M lcm  N
)  e.  NN  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  /\  -.  ( M  =  0  \/  -u N  =  0 ) )  ->  (
( M  ||  ( M lcm  N )  /\  -u N  ||  ( M lcm  N ) )  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) )
6362ex 114 . . . . . . . . 9  |-  ( ( ( M lcm  N )  e.  NN  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) )
642, 63syl3an3 1263 . . . . . . . 8  |-  ( ( ( M lcm  N )  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) )
65643expib 1196 . . . . . . 7  |-  ( ( M lcm  N )  e.  NN  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  -u N  =  0 )  ->  ( ( M  ||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) ) ) )
6657, 47, 43, 65syl3c 63 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  -u N  ||  ( M lcm  N )
)  ->  ( M lcm  -u N )  <_  ( M lcm  N ) ) )
6761, 66sylbid 149 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M 
||  ( M lcm  N
)  /\  N  ||  ( M lcm  N ) )  -> 
( M lcm  -u N
)  <_  ( M lcm  N ) ) )
6855, 67mpd 13 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  -u N
)  <_  ( M lcm  N ) )
69 lcmcl 12004 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
7069nn0red 9168 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  RR )
7130nn0red 9168 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  RR )
722, 71sylan2 284 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  e.  RR )
7370, 72letri3d 8014 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  ( M lcm  -u N )  <->  ( ( M lcm  N )  <_  ( M lcm  -u N )  /\  ( M lcm  -u N )  <_  ( M lcm  N
) ) ) )
7473adantr 274 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  =  ( M lcm  -u N )  <->  ( ( M lcm  N )  <_  ( M lcm  -u N )  /\  ( M lcm  -u N )  <_  ( M lcm  N
) ) ) )
7553, 68, 74mpbir2and 934 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  =  ( M lcm  -u N ) )
76 lcmmndc 11994 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
77 exmiddc 826 . . . 4  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7876, 77syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
7926, 75, 78mpjaodan 788 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  ( M lcm  -u N
) )
8079eqcomd 2171 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  -u N
)  =  ( M lcm 
N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    <_ cle 7934   -ucneg 8070   NNcn 8857   NN0cn0 9114   ZZcz 9191    || cdvds 11727   lcm clcm 11992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-lcm 11993
This theorem is referenced by:  neglcm  12007  lcmabs  12008
  Copyright terms: Public domain W3C validator