| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemval | Unicode version | ||
| Description: Lemma for caucvgprpr 7779. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| caucvgprpr.f | 
 | 
| caucvgprpr.cau | 
 | 
| Ref | Expression | 
|---|---|
| caucvgprprlemval | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltrelpi 7391 | 
. . . . 5
 | |
| 2 | 1 | brel 4715 | 
. . . 4
 | 
| 3 | 2 | adantl 277 | 
. . 3
 | 
| 4 | caucvgprpr.f | 
. . . . 5
 | |
| 5 | caucvgprpr.cau | 
. . . . 5
 | |
| 6 | 4, 5 | caucvgprprlemcbv 7754 | 
. . . 4
 | 
| 7 | 6 | adantr 276 | 
. . 3
 | 
| 8 | simpr 110 | 
. . 3
 | |
| 9 | breq1 4036 | 
. . . . 5
 | |
| 10 | fveq2 5558 | 
. . . . . . 7
 | |
| 11 | opeq1 3808 | 
. . . . . . . . . . . . 13
 | |
| 12 | 11 | eceq1d 6628 | 
. . . . . . . . . . . 12
 | 
| 13 | 12 | fveq2d 5562 | 
. . . . . . . . . . 11
 | 
| 14 | 13 | breq2d 4045 | 
. . . . . . . . . 10
 | 
| 15 | 14 | abbidv 2314 | 
. . . . . . . . 9
 | 
| 16 | 13 | breq1d 4043 | 
. . . . . . . . . 10
 | 
| 17 | 16 | abbidv 2314 | 
. . . . . . . . 9
 | 
| 18 | 15, 17 | opeq12d 3816 | 
. . . . . . . 8
 | 
| 19 | 18 | oveq2d 5938 | 
. . . . . . 7
 | 
| 20 | 10, 19 | breq12d 4046 | 
. . . . . 6
 | 
| 21 | 10, 18 | oveq12d 5940 | 
. . . . . . 7
 | 
| 22 | 21 | breq2d 4045 | 
. . . . . 6
 | 
| 23 | 20, 22 | anbi12d 473 | 
. . . . 5
 | 
| 24 | 9, 23 | imbi12d 234 | 
. . . 4
 | 
| 25 | breq2 4037 | 
. . . . 5
 | |
| 26 | fveq2 5558 | 
. . . . . . . 8
 | |
| 27 | 26 | oveq1d 5937 | 
. . . . . . 7
 | 
| 28 | 27 | breq2d 4045 | 
. . . . . 6
 | 
| 29 | 26 | breq1d 4043 | 
. . . . . 6
 | 
| 30 | 28, 29 | anbi12d 473 | 
. . . . 5
 | 
| 31 | 25, 30 | imbi12d 234 | 
. . . 4
 | 
| 32 | 24, 31 | rspc2v 2881 | 
. . 3
 | 
| 33 | 3, 7, 8, 32 | syl3c 63 | 
. 2
 | 
| 34 | breq1 4036 | 
. . . . . . 7
 | |
| 35 | 34 | cbvabv 2321 | 
. . . . . 6
 | 
| 36 | breq2 4037 | 
. . . . . . 7
 | |
| 37 | 36 | cbvabv 2321 | 
. . . . . 6
 | 
| 38 | 35, 37 | opeq12i 3813 | 
. . . . 5
 | 
| 39 | 38 | oveq2i 5933 | 
. . . 4
 | 
| 40 | 39 | breq2i 4041 | 
. . 3
 | 
| 41 | 38 | oveq2i 5933 | 
. . . 4
 | 
| 42 | 41 | breq2i 4041 | 
. . 3
 | 
| 43 | 40, 42 | anbi12i 460 | 
. 2
 | 
| 44 | 33, 43 | sylib 122 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fv 5266 df-ov 5925 df-ec 6594 df-lti 7374 | 
| This theorem is referenced by: caucvgprprlemnkltj 7756 caucvgprprlemnjltk 7758 caucvgprprlemnbj 7760 | 
| Copyright terms: Public domain | W3C validator |