| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemval | Unicode version | ||
| Description: Lemma for caucvgprpr 7895. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| Ref | Expression |
|---|---|
| caucvgprprlemval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpi 7507 |
. . . . 5
| |
| 2 | 1 | brel 4770 |
. . . 4
|
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | caucvgprpr.f |
. . . . 5
| |
| 5 | caucvgprpr.cau |
. . . . 5
| |
| 6 | 4, 5 | caucvgprprlemcbv 7870 |
. . . 4
|
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | simpr 110 |
. . 3
| |
| 9 | breq1 4085 |
. . . . 5
| |
| 10 | fveq2 5626 |
. . . . . . 7
| |
| 11 | opeq1 3856 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | eceq1d 6714 |
. . . . . . . . . . . 12
|
| 13 | 12 | fveq2d 5630 |
. . . . . . . . . . 11
|
| 14 | 13 | breq2d 4094 |
. . . . . . . . . 10
|
| 15 | 14 | abbidv 2347 |
. . . . . . . . 9
|
| 16 | 13 | breq1d 4092 |
. . . . . . . . . 10
|
| 17 | 16 | abbidv 2347 |
. . . . . . . . 9
|
| 18 | 15, 17 | opeq12d 3864 |
. . . . . . . 8
|
| 19 | 18 | oveq2d 6016 |
. . . . . . 7
|
| 20 | 10, 19 | breq12d 4095 |
. . . . . 6
|
| 21 | 10, 18 | oveq12d 6018 |
. . . . . . 7
|
| 22 | 21 | breq2d 4094 |
. . . . . 6
|
| 23 | 20, 22 | anbi12d 473 |
. . . . 5
|
| 24 | 9, 23 | imbi12d 234 |
. . . 4
|
| 25 | breq2 4086 |
. . . . 5
| |
| 26 | fveq2 5626 |
. . . . . . . 8
| |
| 27 | 26 | oveq1d 6015 |
. . . . . . 7
|
| 28 | 27 | breq2d 4094 |
. . . . . 6
|
| 29 | 26 | breq1d 4092 |
. . . . . 6
|
| 30 | 28, 29 | anbi12d 473 |
. . . . 5
|
| 31 | 25, 30 | imbi12d 234 |
. . . 4
|
| 32 | 24, 31 | rspc2v 2920 |
. . 3
|
| 33 | 3, 7, 8, 32 | syl3c 63 |
. 2
|
| 34 | breq1 4085 |
. . . . . . 7
| |
| 35 | 34 | cbvabv 2354 |
. . . . . 6
|
| 36 | breq2 4086 |
. . . . . . 7
| |
| 37 | 36 | cbvabv 2354 |
. . . . . 6
|
| 38 | 35, 37 | opeq12i 3861 |
. . . . 5
|
| 39 | 38 | oveq2i 6011 |
. . . 4
|
| 40 | 39 | breq2i 4090 |
. . 3
|
| 41 | 38 | oveq2i 6011 |
. . . 4
|
| 42 | 41 | breq2i 4090 |
. . 3
|
| 43 | 40, 42 | anbi12i 460 |
. 2
|
| 44 | 33, 43 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fv 5325 df-ov 6003 df-ec 6680 df-lti 7490 |
| This theorem is referenced by: caucvgprprlemnkltj 7872 caucvgprprlemnjltk 7874 caucvgprprlemnbj 7876 |
| Copyright terms: Public domain | W3C validator |