| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemval | Unicode version | ||
| Description: Lemma for caucvgprpr 7845. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| Ref | Expression |
|---|---|
| caucvgprprlemval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpi 7457 |
. . . . 5
| |
| 2 | 1 | brel 4735 |
. . . 4
|
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | caucvgprpr.f |
. . . . 5
| |
| 5 | caucvgprpr.cau |
. . . . 5
| |
| 6 | 4, 5 | caucvgprprlemcbv 7820 |
. . . 4
|
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | simpr 110 |
. . 3
| |
| 9 | breq1 4054 |
. . . . 5
| |
| 10 | fveq2 5589 |
. . . . . . 7
| |
| 11 | opeq1 3825 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | eceq1d 6669 |
. . . . . . . . . . . 12
|
| 13 | 12 | fveq2d 5593 |
. . . . . . . . . . 11
|
| 14 | 13 | breq2d 4063 |
. . . . . . . . . 10
|
| 15 | 14 | abbidv 2324 |
. . . . . . . . 9
|
| 16 | 13 | breq1d 4061 |
. . . . . . . . . 10
|
| 17 | 16 | abbidv 2324 |
. . . . . . . . 9
|
| 18 | 15, 17 | opeq12d 3833 |
. . . . . . . 8
|
| 19 | 18 | oveq2d 5973 |
. . . . . . 7
|
| 20 | 10, 19 | breq12d 4064 |
. . . . . 6
|
| 21 | 10, 18 | oveq12d 5975 |
. . . . . . 7
|
| 22 | 21 | breq2d 4063 |
. . . . . 6
|
| 23 | 20, 22 | anbi12d 473 |
. . . . 5
|
| 24 | 9, 23 | imbi12d 234 |
. . . 4
|
| 25 | breq2 4055 |
. . . . 5
| |
| 26 | fveq2 5589 |
. . . . . . . 8
| |
| 27 | 26 | oveq1d 5972 |
. . . . . . 7
|
| 28 | 27 | breq2d 4063 |
. . . . . 6
|
| 29 | 26 | breq1d 4061 |
. . . . . 6
|
| 30 | 28, 29 | anbi12d 473 |
. . . . 5
|
| 31 | 25, 30 | imbi12d 234 |
. . . 4
|
| 32 | 24, 31 | rspc2v 2894 |
. . 3
|
| 33 | 3, 7, 8, 32 | syl3c 63 |
. 2
|
| 34 | breq1 4054 |
. . . . . . 7
| |
| 35 | 34 | cbvabv 2331 |
. . . . . 6
|
| 36 | breq2 4055 |
. . . . . . 7
| |
| 37 | 36 | cbvabv 2331 |
. . . . . 6
|
| 38 | 35, 37 | opeq12i 3830 |
. . . . 5
|
| 39 | 38 | oveq2i 5968 |
. . . 4
|
| 40 | 39 | breq2i 4059 |
. . 3
|
| 41 | 38 | oveq2i 5968 |
. . . 4
|
| 42 | 41 | breq2i 4059 |
. . 3
|
| 43 | 40, 42 | anbi12i 460 |
. 2
|
| 44 | 33, 43 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fv 5288 df-ov 5960 df-ec 6635 df-lti 7440 |
| This theorem is referenced by: caucvgprprlemnkltj 7822 caucvgprprlemnjltk 7824 caucvgprprlemnbj 7826 |
| Copyright terms: Public domain | W3C validator |