Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprprlemval | Unicode version |
Description: Lemma for caucvgprpr 7647. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.) |
Ref | Expression |
---|---|
caucvgprpr.f | |
caucvgprpr.cau |
Ref | Expression |
---|---|
caucvgprprlemval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpi 7259 | . . . . 5 | |
2 | 1 | brel 4653 | . . . 4 |
3 | 2 | adantl 275 | . . 3 |
4 | caucvgprpr.f | . . . . 5 | |
5 | caucvgprpr.cau | . . . . 5 | |
6 | 4, 5 | caucvgprprlemcbv 7622 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | simpr 109 | . . 3 | |
9 | breq1 3982 | . . . . 5 | |
10 | fveq2 5483 | . . . . . . 7 | |
11 | opeq1 3755 | . . . . . . . . . . . . 13 | |
12 | 11 | eceq1d 6531 | . . . . . . . . . . . 12 |
13 | 12 | fveq2d 5487 | . . . . . . . . . . 11 |
14 | 13 | breq2d 3991 | . . . . . . . . . 10 |
15 | 14 | abbidv 2282 | . . . . . . . . 9 |
16 | 13 | breq1d 3989 | . . . . . . . . . 10 |
17 | 16 | abbidv 2282 | . . . . . . . . 9 |
18 | 15, 17 | opeq12d 3763 | . . . . . . . 8 |
19 | 18 | oveq2d 5855 | . . . . . . 7 |
20 | 10, 19 | breq12d 3992 | . . . . . 6 |
21 | 10, 18 | oveq12d 5857 | . . . . . . 7 |
22 | 21 | breq2d 3991 | . . . . . 6 |
23 | 20, 22 | anbi12d 465 | . . . . 5 |
24 | 9, 23 | imbi12d 233 | . . . 4 |
25 | breq2 3983 | . . . . 5 | |
26 | fveq2 5483 | . . . . . . . 8 | |
27 | 26 | oveq1d 5854 | . . . . . . 7 |
28 | 27 | breq2d 3991 | . . . . . 6 |
29 | 26 | breq1d 3989 | . . . . . 6 |
30 | 28, 29 | anbi12d 465 | . . . . 5 |
31 | 25, 30 | imbi12d 233 | . . . 4 |
32 | 24, 31 | rspc2v 2841 | . . 3 |
33 | 3, 7, 8, 32 | syl3c 63 | . 2 |
34 | breq1 3982 | . . . . . . 7 | |
35 | 34 | cbvabv 2289 | . . . . . 6 |
36 | breq2 3983 | . . . . . . 7 | |
37 | 36 | cbvabv 2289 | . . . . . 6 |
38 | 35, 37 | opeq12i 3760 | . . . . 5 |
39 | 38 | oveq2i 5850 | . . . 4 |
40 | 39 | breq2i 3987 | . . 3 |
41 | 38 | oveq2i 5850 | . . . 4 |
42 | 41 | breq2i 3987 | . . 3 |
43 | 40, 42 | anbi12i 456 | . 2 |
44 | 33, 43 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1342 wcel 2135 cab 2150 wral 2442 cop 3576 class class class wbr 3979 wf 5181 cfv 5185 (class class class)co 5839 c1o 6371 cec 6493 cnpi 7207 clti 7210 ceq 7214 crq 7219 cltq 7220 cnp 7226 cpp 7228 cltp 7230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2726 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-xp 4607 df-cnv 4609 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fv 5193 df-ov 5842 df-ec 6497 df-lti 7242 |
This theorem is referenced by: caucvgprprlemnkltj 7624 caucvgprprlemnjltk 7626 caucvgprprlemnbj 7628 |
Copyright terms: Public domain | W3C validator |