Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprprlemval | Unicode version |
Description: Lemma for caucvgprpr 7653. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.) |
Ref | Expression |
---|---|
caucvgprpr.f | |
caucvgprpr.cau |
Ref | Expression |
---|---|
caucvgprprlemval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpi 7265 | . . . . 5 | |
2 | 1 | brel 4656 | . . . 4 |
3 | 2 | adantl 275 | . . 3 |
4 | caucvgprpr.f | . . . . 5 | |
5 | caucvgprpr.cau | . . . . 5 | |
6 | 4, 5 | caucvgprprlemcbv 7628 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | simpr 109 | . . 3 | |
9 | breq1 3985 | . . . . 5 | |
10 | fveq2 5486 | . . . . . . 7 | |
11 | opeq1 3758 | . . . . . . . . . . . . 13 | |
12 | 11 | eceq1d 6537 | . . . . . . . . . . . 12 |
13 | 12 | fveq2d 5490 | . . . . . . . . . . 11 |
14 | 13 | breq2d 3994 | . . . . . . . . . 10 |
15 | 14 | abbidv 2284 | . . . . . . . . 9 |
16 | 13 | breq1d 3992 | . . . . . . . . . 10 |
17 | 16 | abbidv 2284 | . . . . . . . . 9 |
18 | 15, 17 | opeq12d 3766 | . . . . . . . 8 |
19 | 18 | oveq2d 5858 | . . . . . . 7 |
20 | 10, 19 | breq12d 3995 | . . . . . 6 |
21 | 10, 18 | oveq12d 5860 | . . . . . . 7 |
22 | 21 | breq2d 3994 | . . . . . 6 |
23 | 20, 22 | anbi12d 465 | . . . . 5 |
24 | 9, 23 | imbi12d 233 | . . . 4 |
25 | breq2 3986 | . . . . 5 | |
26 | fveq2 5486 | . . . . . . . 8 | |
27 | 26 | oveq1d 5857 | . . . . . . 7 |
28 | 27 | breq2d 3994 | . . . . . 6 |
29 | 26 | breq1d 3992 | . . . . . 6 |
30 | 28, 29 | anbi12d 465 | . . . . 5 |
31 | 25, 30 | imbi12d 233 | . . . 4 |
32 | 24, 31 | rspc2v 2843 | . . 3 |
33 | 3, 7, 8, 32 | syl3c 63 | . 2 |
34 | breq1 3985 | . . . . . . 7 | |
35 | 34 | cbvabv 2291 | . . . . . 6 |
36 | breq2 3986 | . . . . . . 7 | |
37 | 36 | cbvabv 2291 | . . . . . 6 |
38 | 35, 37 | opeq12i 3763 | . . . . 5 |
39 | 38 | oveq2i 5853 | . . . 4 |
40 | 39 | breq2i 3990 | . . 3 |
41 | 38 | oveq2i 5853 | . . . 4 |
42 | 41 | breq2i 3990 | . . 3 |
43 | 40, 42 | anbi12i 456 | . 2 |
44 | 33, 43 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cab 2151 wral 2444 cop 3579 class class class wbr 3982 wf 5184 cfv 5188 (class class class)co 5842 c1o 6377 cec 6499 cnpi 7213 clti 7216 ceq 7220 crq 7225 cltq 7226 cnp 7232 cpp 7234 cltp 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fv 5196 df-ov 5845 df-ec 6503 df-lti 7248 |
This theorem is referenced by: caucvgprprlemnkltj 7630 caucvgprprlemnjltk 7632 caucvgprprlemnbj 7634 |
Copyright terms: Public domain | W3C validator |