ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5uzti Unicode version

Theorem peano5uzti 9183
Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
Assertion
Ref Expression
peano5uzti  |-  ( N  e.  ZZ  ->  (
( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  { k  e.  ZZ  |  N  <_ 
k }  C_  A
) )
Distinct variable groups:    x, k, A   
k, N, x

Proof of Theorem peano5uzti
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 breq2 3941 . . . . . . . 8  |-  ( k  =  n  ->  ( N  <_  k  <->  N  <_  n ) )
21elrab 2844 . . . . . . 7  |-  ( n  e.  { k  e.  ZZ  |  N  <_ 
k }  <->  ( n  e.  ZZ  /\  N  <_  n ) )
32anbi2i 453 . . . . . 6  |-  ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  n  e.  {
k  e.  ZZ  |  N  <_  k } )  <-> 
( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) ) )
4 zcn 9083 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  n  e.  CC )
54ad2antrl 482 . . . . . . . 8  |-  ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  ( n  e.  ZZ  /\  N  <_  n ) )  ->  n  e.  CC )
6 zcn 9083 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
7 1cnd 7806 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  1  e.  CC )
86, 7subcld 8097 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  CC )
9 npcan 7995 . . . . . . . 8  |-  ( ( n  e.  CC  /\  ( N  -  1
)  e.  CC )  ->  ( ( n  -  ( N  - 
1 ) )  +  ( N  -  1 ) )  =  n )
105, 8, 9syl2an 287 . . . . . . 7  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  ( ( n  -  ( N  - 
1 ) )  +  ( N  -  1 ) )  =  n )
11 ax-1cn 7737 . . . . . . . . . . 11  |-  1  e.  CC
12 subsub 8016 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
n  -  ( N  -  1 ) )  =  ( ( n  -  N )  +  1 ) )
1311, 12mp3an3 1305 . . . . . . . . . 10  |-  ( ( n  e.  CC  /\  N  e.  CC )  ->  ( n  -  ( N  -  1 ) )  =  ( ( n  -  N )  +  1 ) )
145, 6, 13syl2an 287 . . . . . . . . 9  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  ( n  -  ( N  -  1
) )  =  ( ( n  -  N
)  +  1 ) )
15 znn0sub 9143 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( N  <_  n  <->  ( n  -  N )  e.  NN0 ) )
1615biimpa 294 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  n  e.  ZZ )  /\  N  <_  n
)  ->  ( n  -  N )  e.  NN0 )
1716anasss 397 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( n  e.  ZZ  /\  N  <_  n )
)  ->  ( n  -  N )  e.  NN0 )
1817ancoms 266 . . . . . . . . . . 11  |-  ( ( ( n  e.  ZZ  /\  N  <_  n )  /\  N  e.  ZZ )  ->  ( n  -  N )  e.  NN0 )
1918adantll 468 . . . . . . . . . 10  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  ( n  -  N )  e.  NN0 )
20 nn0p1nn 9040 . . . . . . . . . 10  |-  ( ( n  -  N )  e.  NN0  ->  ( ( n  -  N )  +  1 )  e.  NN )
2119, 20syl 14 . . . . . . . . 9  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  ( ( n  -  N )  +  1 )  e.  NN )
2214, 21eqeltrd 2217 . . . . . . . 8  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  ( n  -  ( N  -  1
) )  e.  NN )
23 simpr 109 . . . . . . . 8  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  N  e.  ZZ )
24 simpll 519 . . . . . . . 8  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )
25 oveq1 5789 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
k  +  ( N  -  1 ) )  =  ( 1  +  ( N  -  1 ) ) )
2625eleq1d 2209 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
( k  +  ( N  -  1 ) )  e.  A  <->  ( 1  +  ( N  - 
1 ) )  e.  A ) )
2726imbi2d 229 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
k  +  ( N  -  1 ) )  e.  A )  <->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( 1  +  ( N  -  1 ) )  e.  A ) ) )
2827imbi2d 229 . . . . . . . . 9  |-  ( k  =  1  ->  (
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
k  +  ( N  -  1 ) )  e.  A ) )  <-> 
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
1  +  ( N  -  1 ) )  e.  A ) ) ) )
29 oveq1 5789 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
k  +  ( N  -  1 ) )  =  ( n  +  ( N  -  1
) ) )
3029eleq1d 2209 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( k  +  ( N  -  1 ) )  e.  A  <->  ( n  +  ( N  - 
1 ) )  e.  A ) )
3130imbi2d 229 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
k  +  ( N  -  1 ) )  e.  A )  <->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( n  +  ( N  -  1 ) )  e.  A ) ) )
3231imbi2d 229 . . . . . . . . 9  |-  ( k  =  n  ->  (
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
k  +  ( N  -  1 ) )  e.  A ) )  <-> 
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
n  +  ( N  -  1 ) )  e.  A ) ) ) )
33 oveq1 5789 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  (
k  +  ( N  -  1 ) )  =  ( ( n  +  1 )  +  ( N  -  1 ) ) )
3433eleq1d 2209 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( k  +  ( N  -  1 ) )  e.  A  <->  ( (
n  +  1 )  +  ( N  - 
1 ) )  e.  A ) )
3534imbi2d 229 . . . . . . . . . 10  |-  ( k  =  ( n  + 
1 )  ->  (
( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
k  +  ( N  -  1 ) )  e.  A )  <->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( ( n  + 
1 )  +  ( N  -  1 ) )  e.  A ) ) )
3635imbi2d 229 . . . . . . . . 9  |-  ( k  =  ( n  + 
1 )  ->  (
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
k  +  ( N  -  1 ) )  e.  A ) )  <-> 
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
( n  +  1 )  +  ( N  -  1 ) )  e.  A ) ) ) )
37 oveq1 5789 . . . . . . . . . . . 12  |-  ( k  =  ( n  -  ( N  -  1
) )  ->  (
k  +  ( N  -  1 ) )  =  ( ( n  -  ( N  - 
1 ) )  +  ( N  -  1 ) ) )
3837eleq1d 2209 . . . . . . . . . . 11  |-  ( k  =  ( n  -  ( N  -  1
) )  ->  (
( k  +  ( N  -  1 ) )  e.  A  <->  ( (
n  -  ( N  -  1 ) )  +  ( N  - 
1 ) )  e.  A ) )
3938imbi2d 229 . . . . . . . . . 10  |-  ( k  =  ( n  -  ( N  -  1
) )  ->  (
( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
k  +  ( N  -  1 ) )  e.  A )  <->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( ( n  -  ( N  -  1
) )  +  ( N  -  1 ) )  e.  A ) ) )
4039imbi2d 229 . . . . . . . . 9  |-  ( k  =  ( n  -  ( N  -  1
) )  ->  (
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
k  +  ( N  -  1 ) )  e.  A ) )  <-> 
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
( n  -  ( N  -  1 ) )  +  ( N  -  1 ) )  e.  A ) ) ) )
41 1cnd 7806 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A ) )  ->  1  e.  CC )
426adantr 274 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A ) )  ->  N  e.  CC )
4341, 42pncan3d 8100 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A ) )  ->  ( 1  +  ( N  - 
1 ) )  =  N )
44 simprl 521 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A ) )  ->  N  e.  A )
4543, 44eqeltrd 2217 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A ) )  ->  ( 1  +  ( N  - 
1 ) )  e.  A )
4645ex 114 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  ( 1  +  ( N  -  1 ) )  e.  A
) )
47 oveq1 5789 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( n  +  ( N  -  1
) )  ->  (
x  +  1 )  =  ( ( n  +  ( N  - 
1 ) )  +  1 ) )
4847eleq1d 2209 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( n  +  ( N  -  1
) )  ->  (
( x  +  1 )  e.  A  <->  ( (
n  +  ( N  -  1 ) )  +  1 )  e.  A ) )
4948rspccv 2790 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  (
( n  +  ( N  -  1 ) )  e.  A  -> 
( ( n  +  ( N  -  1
) )  +  1 )  e.  A ) )
5049ad2antll 483 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\  N  e.  ZZ )  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )  -> 
( ( n  +  ( N  -  1
) )  e.  A  ->  ( ( n  +  ( N  -  1
) )  +  1 )  e.  A ) )
51 simpll 519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN  /\  N  e.  ZZ )  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )  ->  n  e.  NN )
5251nncnd 8758 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\  N  e.  ZZ )  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )  ->  n  e.  CC )
538ad2antlr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\  N  e.  ZZ )  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )  -> 
( N  -  1 )  e.  CC )
54 1cnd 7806 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\  N  e.  ZZ )  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )  -> 
1  e.  CC )
5552, 53, 54add32d 7954 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN  /\  N  e.  ZZ )  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )  -> 
( ( n  +  ( N  -  1
) )  +  1 )  =  ( ( n  +  1 )  +  ( N  - 
1 ) ) )
5655eleq1d 2209 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\  N  e.  ZZ )  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )  -> 
( ( ( n  +  ( N  - 
1 ) )  +  1 )  e.  A  <->  ( ( n  +  1 )  +  ( N  -  1 ) )  e.  A ) )
5750, 56sylibd 148 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\  N  e.  ZZ )  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A ) )  -> 
( ( n  +  ( N  -  1
) )  e.  A  ->  ( ( n  + 
1 )  +  ( N  -  1 ) )  e.  A ) )
5857ex 114 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  N  e.  ZZ )  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
( n  +  ( N  -  1 ) )  e.  A  -> 
( ( n  + 
1 )  +  ( N  -  1 ) )  e.  A ) ) )
5958a2d 26 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  N  e.  ZZ )  ->  ( ( ( N  e.  A  /\  A. x  e.  A  (
x  +  1 )  e.  A )  -> 
( n  +  ( N  -  1 ) )  e.  A )  ->  ( ( N  e.  A  /\  A. x  e.  A  (
x  +  1 )  e.  A )  -> 
( ( n  + 
1 )  +  ( N  -  1 ) )  e.  A ) ) )
6059ex 114 . . . . . . . . . 10  |-  ( n  e.  NN  ->  ( N  e.  ZZ  ->  ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
n  +  ( N  -  1 ) )  e.  A )  -> 
( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
( n  +  1 )  +  ( N  -  1 ) )  e.  A ) ) ) )
6160a2d 26 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  (
n  +  ( N  -  1 ) )  e.  A ) )  ->  ( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( ( n  + 
1 )  +  ( N  -  1 ) )  e.  A ) ) ) )
6228, 32, 36, 40, 46, 61nnind 8760 . . . . . . . 8  |-  ( ( n  -  ( N  -  1 ) )  e.  NN  ->  ( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  ( ( n  -  ( N  - 
1 ) )  +  ( N  -  1 ) )  e.  A
) ) )
6322, 23, 24, 62syl3c 63 . . . . . . 7  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  ( ( n  -  ( N  - 
1 ) )  +  ( N  -  1 ) )  e.  A
)
6410, 63eqeltrrd 2218 . . . . . 6  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  (
n  e.  ZZ  /\  N  <_  n ) )  /\  N  e.  ZZ )  ->  n  e.  A
)
653, 64sylanb 282 . . . . 5  |-  ( ( ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  n  e.  { k  e.  ZZ  |  N  <_  k } )  /\  N  e.  ZZ )  ->  n  e.  A )
6665expcom 115 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  /\  n  e.  { k  e.  ZZ  |  N  <_  k } )  ->  n  e.  A ) )
6766expdimp 257 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A ) )  ->  ( n  e.  { k  e.  ZZ  |  N  <_  k }  ->  n  e.  A
) )
6867ssrdv 3108 . 2  |-  ( ( N  e.  ZZ  /\  ( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A ) )  ->  { k  e.  ZZ  |  N  <_ 
k }  C_  A
)
6968ex 114 1  |-  ( N  e.  ZZ  ->  (
( N  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  { k  e.  ZZ  |  N  <_ 
k }  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   {crab 2421    C_ wss 3076   class class class wbr 3937  (class class class)co 5782   CCcc 7642   1c1 7645    + caddc 7647    <_ cle 7825    - cmin 7957   NNcn 8744   NN0cn0 9001   ZZcz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079
This theorem is referenced by:  peano5uzi  9184  uzind  9186
  Copyright terms: Public domain W3C validator